Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanisms for northwards dispersal of Sellafield waste

Abstract

Almost all of the plutonium and americium discharged as liquid effluent from Sellafield is retained in the sediments of the north east Irish Sea1–5, whereas the waste radiocaesium shows relatively conservative behaviour in seawater and is mostly dispersed into more distant waters with only a small fraction being retained in Irish Sea sediment6–12. Sellafield discharges13,14 considered in the light of radionuclide geochemistry and radioactive decay and grow-in15 imply that, by the end of 1984, the sediments of the north-east Irish Sea contained about 6 x 102 TBq each of 239,240Pu and 241Am and of the order of 103TBq of 137Cs. This contamination, of globally significant magnitude16,17, is largely concentrated in restricted areas of fine sediment off the Cumbrian coast close to Sellafield3,4,18 so it is important to identify processes which could lead to the dispersal of these nuclides to areas of potential human contact (such as intertidal sediments) over the long time scales appropriate to the half lives of 241AM Am (458 yr), 239Pu (2.44 x 104 yr) and 240Pu (6.58 x 103 yr). Because no significant return of these actinides to solution in seawater is likely19,20, most concern must be centred upon physical dispersal processes affecting the contaminated sediment. These are ill-defined, although Hunt21 contends that actinides incorporated in intertidal sediments near Sellafield are subject to mixing with previously discharged waste and to dispersal, with removal from the surface sediments within one or two decades. Here we present the results of a study of radionuclide concentrations in surface (<0.5cm depth) intertidal sediments collected during 1984–85 which provide the basis for an estimate of the extent of northwards dispersal of the contaminated sediment and an assessment of the importance of this process relative to transport of radionuclides in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hetherington, J. A. in Environmental Toxicity of Aquatic Radionuclides: Models and Mechanisms (eds Miller, M. W. & Stannard, J. N.) 82–106 (Ann Arbor Science, Ann Arbor, 1975).

    Google Scholar 

  2. Hetherington, J. A. Mar. Sci. Commun. 4, 239–274 (1978).

    CAS  Google Scholar 

  3. Smith, T. J., Parker, W. R. & Kirby, R. Institute of Oceanographic Sciences Rep. No. 110 (1980).

  4. Pentreath, R. J., Lovett, M. B., Jefferies, D. F., Woodhead, D. S., Talbot, J. W. & Mitchell, N. T. Proc. IAEA Conf. Radioactive Waste Management 5, 315–329 (1984).

    CAS  Google Scholar 

  5. Pentreath, R. J., Harvey, B. R. & Lovett, M. B. in Speciation of Fission and Activation Products in the Environment (eds Bulman, R. A. & Cooper, J. R.) 312–325 (Elsevier, London, 1986).

    Google Scholar 

  6. Jefferies, D. F., Preston, A. & Steele, A. K. Mar. Pollut. Bull. 4, 118–122 (1973).

    Article  CAS  Google Scholar 

  7. Livingston, H. D. & Bowen, V. T. Nature 269, 586–588 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Baxter, M. S., McKinley, I. G., MacKenzie, A. B. & Jack, W. Mar. Pollut. Bull. 10, 116–120 (1979).

    Article  CAS  Google Scholar 

  9. McKinley, I. G., Baxter, M. S. & Jack, W. Estuarine Coastal Shelf Sci. 13, 59–67 (1981).

    Article  ADS  Google Scholar 

  10. McKinley, I. G., Baxter, M. S., Ellett, D. J. & Jack, W. Estuarine Coastal Shelf Sci. 13, 69–82 (1981).

    Article  ADS  Google Scholar 

  11. Livingston, H. D., Bowen, V. T. & Kupferman, S. L. J. mar. Res. 40, 253–272 (1982).

    CAS  Google Scholar 

  12. Miller, J. M., Thomas, B. W., Roberts, P. D. & Creamer, S. C. Mar. Pollut. Bull. 13, 315–319 (1982).

    Article  CAS  Google Scholar 

  13. Cambray, R. S. AERE Harwell Rep. AERE-M-3269 (1982).

  14. Annual Reports on Radioactive Discharges and Monitoring of the Environment 1982-84 (British Nuclear Fuels Ltd Health and Safety Directorate, Risley).

  15. Day, J. P. & Cross, J. E. Nature 292, 43–45 (1981).

    Article  ADS  CAS  Google Scholar 

  16. MacKenzie, A. B. & Scott, R. D. Nucl. Eng. 25, 110–122 (1984).

    CAS  Google Scholar 

  17. Holm, E. & Persson, R. B. R. Radioactivity in the Sea No. 62 (IAEA, 1977).

    Google Scholar 

  18. Hunt, G. J. Aquatic Environment Monitoring Reports Nos 3, 4, 6, 8, 9, 11, 12, 13 (Ministry of Agriculture Fisheries and Food, Lowestoft, 1979–85).

  19. Nelson, D. M. & Lovett, M. B. Proc. IAEA Conf. Impacts of Radionuclide Releases into the Marine Environment 105–119 (IAEA, Vienna, 1981).

    Google Scholar 

  20. Sholkovitz, E. R. & Mann, D. R. Geochim. cosmochim. Acta 48, 1107–1114 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Hunt, G. J. Sci Total Environ. 46, 261–278 (1985).

    Article  ADS  CAS  Google Scholar 

  22. MacKenzie, A. B., Baxter, M. S., McKinley, I. G., Swan, D. S. & Jack, W. J. radioanalyt. Chem. 48, 29–47 (1979).

    Article  CAS  Google Scholar 

  23. Coleman, G. H. The Radiochemistry of Plutonium (US National Academy of Sciences Publ. NASNS 3058) (1965).

    Google Scholar 

  24. Williams, T. M. thesis, Univ. Strathclyde (1985).

  25. MacKenzie, A. B. & Scott, R. D. Nature 299, 613–616 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Nelson, D. M. & Lovett, M. B. Nature 276, 599–601 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Cambray, R. S. & Eakens, J. D. AERE Harwell Rep. AERE-R-9807 (1980).

  28. Cambray, R. S., Playford, K. & Lewis, G. N. J. AERE Harwell Rep. AERE-R-10485 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, A., Scott, R. & Williams, T. Mechanisms for northwards dispersal of Sellafield waste. Nature 329, 42–45 (1987). https://doi.org/10.1038/329042a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329042a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing