Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The effect of temperature on shuttle glow

Abstract

The glow on ram surfaces of the space shuttle has been reported from a series of photographic observations made during several orbiter missions1–13. These measurements have shown that the spectrum of the glow is a continuum7,13, has a spectral peak at 680 nm4,7, and the brightness decreases with altitude5. The spectrum has been tentatively identified as the nitrogen dioxide continuum and follows the interaction of adsorbed nitric oxide with ramming atmospheric oxygen7–9. One recent observation of the ram glow displayed an unusually low intensity10,13. Further investigation has led us to discover that the main difference between this, and earlier measurements was the spacecraft attitude which in turn significantly influenced the temperature of the ram surfaces observed. In this paper the variation of the glow brightness among several different shuttle flights is re-examined and it is shown that a major contributing factor to glow brightness is probably the temperature of the rammed surface. The derived temperature dependence is also consistent with the Atmospheric Explorer-C satellite ‘red’ glow intensity data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Banks, P. M., Williamson, P. R. & Raitt, W. J. Geophys. Res. Lett. 10, 118–121 (1983).

    Article  ADS  Google Scholar 

  2. Mende, S. B., Garriott, O. K. & Banks, P. M. Geophys. Res. Lett. 10, 122–125 (1983).

    Article  ADS  Google Scholar 

  3. Mende, S. B. AIAA Rept. No. 83-CP838, 79–91 (1983).

  4. Mende, S. B., Banks, P. M. & Klingelsmith, D. A. Geophys. Res. Lett. 11, 527–530 (1984).

    Article  ADS  Google Scholar 

  5. Mende, S. B., Nobles, R., Banks, P. M., Garriott, O. K. & Hoffman, J. J. Spacecraft 21, 374–381 (1984).

    Article  Google Scholar 

  6. Mende, S. B., Swenson, G. R. & Clifton, K. S. Science 225, 191–193 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Swenson, G. R., Mende, S. B. & Clifton, K. S. Geophys. Res. Lett. 12, 97–100 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Mende, S. B. & Swenson, G. R. NASA Conf. Publ. No. 2391, 1–34 (1985).

  9. Swenson, G. R., Mende, S. B. & Clifton, K. S. NASA Conf. Publ. No. 2391, 35–45 (1985).

    Google Scholar 

  10. Kendall, D. J. W. et al. NASA Conf. Publ. No. 2391, 56–62 (1985).

  11. Mende, S. B. et al. J. Spacecraft 23, 189–193 (1986).

    Article  CAS  Google Scholar 

  12. Swenson, G. R., Mende, S. B. & Clifton, K. S. Geophys. Res. Lett. 13, 509–512 (1986).

    Article  ADS  Google Scholar 

  13. Kendall, D. J. W. et al. Planet. Space Sci. (submitted).

  14. Slanger, T. G. J. chem. Phys. 69, 4779–4791 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Kenner, R. D. & Ogryzlo, E. A. J. chem. Phys. 80, 1–6 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Engebretson, M. J. & Mauersberger, K. J. geophys. Res. 84, 839–844 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Engebretson, M. NASA Conf. Publ. No. 2391, 46–54 (1985).

  18. Engebretson, M. & Hedin, A. Geophys. Res. Lett. 13, 109–112 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Reeves, R. R., Manella, G. & Harteck, P. J. chem. Phys. 32, 946–947 (1960).

    Article  ADS  CAS  Google Scholar 

  20. Yee, J-H. & Abreu, V. J. SPIES Rept. No. 338, 120–124 (1982).

  21. Yee, J-H. & Abreu, V. J. Geophys. Res. Lett. 10, 126–129 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Yee, J-H., Abreu, V. J. & Dalgarno, A. Geophys. Res. Lett. 12, 651–654 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Hedin, A. E. J. geophys. Res. 88, 10170–10188 (1983).

    Article  ADS  Google Scholar 

  24. Green, B. D., Caledonia, G. E. & Rawlins, W. T. J. Spacecraft 22, 500–518 (1985).

    Article  CAS  Google Scholar 

  25. Green, B. D., Marinelli, W. J. & Rawlins, W. T. NASA Conf. Publ. No. 2391, 82–97 (1985).

  26. Kofsky, I. L. & Barrett, J. L. NASA Conf. Publ. 2391, 155–164 (1985).

  27. Barrett, J. L. & Kofsky, I. L. NASA Conf. Publ. 2391, 165–168 (1985).

  28. Tanaka, Y. J. chem. Phys. 22, 2045–2048 (1954).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swenson, G., Mende, S. & Llewellyn, E. The effect of temperature on shuttle glow. Nature 323, 519–522 (1986). https://doi.org/10.1038/323519a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323519a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing