Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upper mantle oxygen fugacity recorded by spinel lherzolites

Abstract

The oxygen fugacities ( ƒ O 2 s) recorded by rocks from the Earth's upper mantle have been the subject of much recent study and controversy1–7. Discussion has been stimulated by reported differences of several orders of magnitude between measurements made by different methods (Fig. 1). Oxygen fugacity is an important parameter because, together with temperature, pressure and composition, ƒ O 2 controls the petrogenesis of mantle-derived magmas, affects the composition and speciation of mantle fluids, and is an initial input into geochemical models of the evolution of the Earth's crust, mantle and hydrosphere. Here we report the determination of the ƒ O 2 recorded by upper mantle spinel-lherzolite xenoliths entrained in alkaline magmas. This was done by experimentally calibrating the activity of the Fe3O4 (magnetite) component in MgAl2O4-rich synthetic spinel and applying these data to calculate thermobarometric ƒ O 2 s for the three-phase assemblage livine–orthopyroxene–spinel. Results for appropriate model xenolith compositions, corrected to ISkbar total pressure8 and plotted in temperature– ƒ O 2 space, fall at or above the synthetic quartz–fayalite–magnetite buffer (Fig. 3). In contrast to earlier studies2,3, we conclude that the shallow upper mantle does not retain an ƒ O 2 signature of equilibrium with the metallic core, and that gaseous species in the C–H–O system will be dominated by CO2 and H2O (refs 9, 10), rather than CH4 and H2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sato, M. Mem. geol. Soc. Am. 135, 289–307 (1972).

    Google Scholar 

  2. Arculus, R. J. & Delano, J. W. Nature 288, 72–74 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Arculus, R. J. & Delano, J. W. Geochim. cosmochim. Acta 45, 899–913 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Arculus, R. J., Dawson, J. B., Mitchell, R. H., Gust, D. A. & Holmes, R. D. Contr. Miner. Petrol. 85, 85–94 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Eggler, D. H. Geophys. Res. Lett. 10, 365–368 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Haggerty, S. E. & Tomkins, L. A. Nature 303, 295–300 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Haggerty, S. E. Geophys. Res. Lett. 5, 443–446 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Mattioli, G. S. & Wood, B. J. Geol. Soc. Am. Abstr. Progm. 17, 655 (1985).

    Google Scholar 

  9. French, B. M. Rev. Geophys. 4, 223–253 (1966).

    Article  ADS  CAS  Google Scholar 

  10. Eggler, D. H. & Baker, D. R. in High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M.) 237–250 (Center for Academic Publications, Tokyo, 1982).

    Book  Google Scholar 

  11. Dieckmann, R. Ber. Bunsenges. phys. Chem. 86, 112–118 (1982).

    Article  CAS  Google Scholar 

  12. Basaltic Volcanism Study Project Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981).

  13. Webb, S. A. C. & Wood, B. J. Contr. Miner. Petrol. 92, 471–480 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Oka, Y., Steinke, P. & Chatterjee, N. D. Contr. Miner. Petrol. 87, 196–204 (1985).

    Article  ADS  Google Scholar 

  15. Sack, R. O. Contr. Miner. Petrol. 79, 169–186 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Muna, A. Am. J. Sci. 256, 413–422 (1958).

    Article  ADS  Google Scholar 

  17. Mattioli, G. S. & Wood, B. J. Proc. 14th Conf. Miner. Soc. (in the press).

  18. Wood, B. J. & Kleppa, O. J. Geochim. cosmochim. Acta 45, 529–534 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Bohlen, S. R., Essene, E. J. & Boettcher, A. L. Earth planet. Sci. Lett. 47, 1–10 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Newton, R. C. & Wood, B. J. Am. Miner. 65, 733–745 (1980).

    CAS  Google Scholar 

  21. Fisher, G. W. & Medaris, L. G. Jr Am. Miner. 54, 741–753 (1969).

    CAS  Google Scholar 

  22. Basu, A. R. & MacGregor, I. D. Geochim. cosmochim. Acta 39, 937–945 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Sachtleben, Th. & Seek, H. A. Contr. Miner. Petrol. 78, 157–165 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Fujii, T. & Scarfe, C. M. Contr. Miner. Petrol. 80, 297–306 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Frey, F. A. & Prinz, M. Earth planet. Sci. Lett. 38, 129–176 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Sack, R. O., Carmichael, I. S. E., Rivers, M. & Ghiorso, M. S. Contr. Miner. Petrol. 75, 369–376 (1980).

    Article  ADS  Google Scholar 

  27. Kilinc, A., Carmichael, I. S. E., Rivers, M. L. & Sach, R. O. Contr. Miner. Petrol. 83, 136–140 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Mo, X., Carmichael, I. S. E., Rivers, M. & Stebbins, J. Mineralog. Mag. 45, 237–245 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Menzies, M. A. in Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.) 92–110 (Shiva, Nantwich, 1983).

    Google Scholar 

  30. Arculus, R. J. A. Rev. Earth planet. Sci. 13, 75–95 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Mattioli, G. S., Wood, B. J. & Carmichael, I. S. E. Am. Miner. (submitted).

  32. Myers, J. & Eugster, H. P. Contr. Miner. Petrol. 82, 75–90 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattioli, G., Wood, B. Upper mantle oxygen fugacity recorded by spinel lherzolites. Nature 322, 626–628 (1986). https://doi.org/10.1038/322626a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322626a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing