Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooling flows in ellipticals and the nature of radio galaxies

Abstract

One of the great puzzles in the study of active galaxies is the relationship between the properties of the nucleus and the large-scale morphology of the host galaxy. Galaxies which produce extended radio sources but little optical, ultraviolet or X-ray emission are invariably giant ellipticals or cD galaxies, whereas spirals tend to host ‘optically active’ nuclei, such as Seyferts1 and at least some quasars2,3. Rees and co-workers4–6 have interpreted this difference in radiative efficiency as a manifestation of the accretion flow close to the central black hole. But why should the mode of accretion at several Schwarzschild radii depend on the large-scale morphology of the host galaxy? I argue here that the connection arises from the manner in which interstellar gas is fed into the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, T. F. Astrophys. J. Suppl. Ser. 33, 19–34 (1977).

    Article  ADS  Google Scholar 

  2. Malkan, M. A., Margon, B. & Chanan, G. A. Astrophys. J. 280, 66–78 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hutchings, J. B., Crampton, D. & Campbell, B. Astrophys. J. 280, 41–50 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Nature 295, 17–21 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Begelman, M. C. in Astrophysics of Active Galaxies and Quasi-Stellar Objects (ed. Miller, J. S.) 411–452 (University Science Books, Mill Valley, 1985).

    Google Scholar 

  6. Rees, M. J. A. Rev. Astr. Astrophys. 22, 471–506 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Pringle, J. E. A. Rev. Astr. Astrophys. 19, 137–162 (1981).

    Article  ADS  Google Scholar 

  8. Nulsen, P. E. J., Stewart, G. C. & Fabian, A. C. Mon. Not. R. astr. Soc. 208, 185–195 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Forman, W., Jones, C. & Tucker, W. Astrophys. J. 293, 102–119 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Trinchieri, G. & Fabbiano, G. Astrophys. J. 296, 447–457 (1985).

    Article  ADS  CAS  Google Scholar 

  11. White, R. E. & Chevalier, R. A. Astrophys. J. 280, 561–568 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Sarazin, C. L. Proc. Green Bank Workshop Gaseous Galactic Haloes (National Radio Astronomy Observatory, in the press).

  13. Fabian, A. C., Nulsen, P. E. J. & Canizares, C. R. Nature 310, 733–740 (1984).

    Article  ADS  Google Scholar 

  14. Sarazin, C. L. Rev. mod. Phys. 58, 1–115 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Fabian, A. C., Nulsen, P. E. J. & Canizares, C. R. Mon. Not. R. astr. Soc. 201, 933–938 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Sarazin, C. L. & O'Connell, R. W. Astrophys. J. 268, 552–560 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Fabian, A. C., Arnaud, K. A. & Thomas, P. A. Proc. IAU Symp. 117 (in the press).

  18. White, R. E. & Sarazin, C. L. Astrophys. J. Suppl. Ser. (submitted).

  19. White, R. E. & Sarazin, C. L. Astrophys. J. Suppl. Ser. (submitted).

  20. McKee, C. F. & Cowie, L. L. Astrophys. J. 215, 213–225 (1977).

    Article  ADS  Google Scholar 

  21. Bondi, H. Mon. Not R. astr. Soc. 112, 195–204 (1952).

    Article  ADS  Google Scholar 

  22. Sparke, L. S. & Shu, F. H. Astrophys. J. 241, L65–L68 (1980).

    Article  ADS  Google Scholar 

  23. Faber, S. M. & Jackson, R. E. Astrophys. J. 204, 668–683 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Potash, R. A. & Wardle, J. F. C. Astrophys. J. 239, 42–49 (1980).

    Article  ADS  Google Scholar 

  25. Owen, F. N. & Puschell, J. J. Astr. J. 89, 932–957 (1984).

    Article  ADS  Google Scholar 

  26. Malkan, M. A. Astrophys. J. 287, 555–565 (1984).

    Article  ADS  Google Scholar 

  27. Gehren, T., Fried, J., Wehinger, P. A. & Wyckoff, S. Astrophys. J. 278, 11–27 (1984).

    Article  ADS  Google Scholar 

  28. Begelman, M. C., McKee, C. F. & Shields, G. A. Astrophys. J. 271, 70–88 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Begelman, M. C. Astrophys. J. 297, 492–506 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Begelman, M. C., Sikora, M. & Rees, M. J. Astrophys. J. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begelman, M. Cooling flows in ellipticals and the nature of radio galaxies. Nature 322, 614–615 (1986). https://doi.org/10.1038/322614a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322614a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing