Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stringent control of initiation of chromosomal replication in Bacillus subtilis

Abstract

Interconnecting regulatory networks are characteristic of probably all cellular systems. Such ‘regulons’ allow the cell to respond in a coordinated manner to changes in its environment, including a rapid return to balanced growth after stress1,2. A regulon is usually composed of diverse metabolic pathways whose activities are amplified or inhibited by regulatory proteins, through the action of a small molecule, an alarmone3. Thus, for example, when the level of any aminoacyl transfer RNA becomes limiting in the bacterial cell, the stringent response is initiated; this is mediated through the nucleotide ppGpp and leads to the inhibition of synthesis of several major macromolecules, including stable RNA4,5. Surprisingly, the key control point in the cell cycle, initiation of DNA replication, has not previously been implicated in the stringent response. Using a Bacillus subtilis mutant in which the transcriptional step of initiation can be studied independently of any requirement for protein synthesis6, we now show that initiation of chromosomal replication is indeed subject to stringent control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gottesman, S. & Neidhart, F. C. in Gene Function in Procaryotes (eds Beckwith, J., Davies, J. & Gallant, J. A.) 163–183 (Cold Spring Harbor Laboratory, New York, 1983).

    Google Scholar 

  2. Gottesman, S. A Rev. Genet. 18, 415–441 (1981).

    Article  Google Scholar 

  3. Stephens, J. C., Artz, S. W. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 72, 4389–4393 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Cashel, M. A. Rev. Microbiol. 29, 301–318 (1975).

    Article  CAS  Google Scholar 

  5. Gallant, J. A. A. Rev. Genet. 13, 393–415 (1979).

    Article  CAS  Google Scholar 

  6. Laurent, S. J. J. Bact. 116, 141–145 (1973).

    CAS  PubMed  Google Scholar 

  7. Henckes, G., Vannier, F., Buu, A. & Séror-Laurent, S. J. J. Bact. 149, 79–91 (1982).

    CAS  Google Scholar 

  8. Séror-Laurent, S. J. & Henckes, G. Proc. natn. Acad. Sci. U.S.A. 82, 3586–3590 (1985).

    Article  ADS  Google Scholar 

  9. Henckes, G. et al. Nature 299, 268–271 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Price, V. L. & Gallant, J. A. J. Bact. 149, 635–641 (1982).

    CAS  PubMed  Google Scholar 

  11. Pizer, L. I. & Merlie, J. P. J. Bact. 114, 980–987 (1973).

    CAS  PubMed  Google Scholar 

  12. Laurent, S. J. & Vannier, F. J. Bact. 114, 474–484 (1973).

    CAS  PubMed  Google Scholar 

  13. Ogasawara, N., Mizumoto, S. & Yoshikawa, H. Gene 30, 173–182 (1984).

    Article  CAS  Google Scholar 

  14. Boquet, P. L., Devynck, M. A., Monnier, C. & Fromageot, P. Eur. J. Biochem. 40, 31–42 (1973).

    Article  CAS  Google Scholar 

  15. Orr, E., Meacock, P. A. & Pritchard, R. H. in DNA Synthesis: Present and Future (eds Molineaux, I. & Kohiyama, M.) 85–99 (Plenum, New York, 1978).

    Book  Google Scholar 

  16. Hecker, M., Schroeter, A. & Mach, F. Molec. gen. Genet. 190, 355–357 (1983).

    Article  CAS  Google Scholar 

  17. Ryals, J., Little, R. & Bremer, H. J. Bact. 151, 1261–1268 (1982).

    CAS  PubMed  Google Scholar 

  18. Van Verseveld, H. W., Chesbro, W. R., Braster, M. & Stouthamer, A. H. Arch. Mikrobiol. 137, 176–184 (1984).

    Article  CAS  Google Scholar 

  19. Cozzone, A. J. Biochimie 62, 647–664 (1980).

    Article  CAS  Google Scholar 

  20. Grummt, F. Proc. natn. Acad. Sci. U.S.A. 75, 371–375 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Weinmann-Dorsch, C. et al. Eur. J. Biochem. 138, 170–185 (1984).

    Article  Google Scholar 

  22. Rapaport, E. & Zamenick, P. C. Proc. natn. Acad. Sci. U.S.A. 73, 3984–3988 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Swanton, M. & Edlin, G. Biochem. biophys. Res. Commun. 46, 583–588 (1972).

    Article  CAS  Google Scholar 

  24. Spizizen, J. Proc. natn. Acad. Sci. U.S.A. 44, 1072–1078 (1958).

    Article  ADS  CAS  Google Scholar 

  25. Marsh, R. C. & Worcel, A. Proc. natn. Acad. Sci. U.S.A. 74, 2720–2724 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séror, S., Vannier, F., Levine, A. et al. Stringent control of initiation of chromosomal replication in Bacillus subtilis. Nature 321, 709–710 (1986). https://doi.org/10.1038/321709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing