Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homoeo-domain homology in yeast MATα2 is essential for repressor activity

Abstract

The MATα locus of the yeast Saccharomyces cerevisiae encodes two regulatory proteins, α1 and α2, which are responsible for determining the α-cell type1–4. MATα1 is a positive regulator of α-cell-type-specific genes, and MATα2 is a negative regulator of a-cell-type-specific genes. MATα2 also determines the a/α diploid cell type, in conjunction with the MATa product, a1, by repressing haploid cell-type-specific genes2. The MATα2-encoded protein binds specifically in vitro to a DNA sequence found upstream of several a-specific genes5 and is thus thought to exert its control directly at the transcriptional level of target genes. In an initial attempt to understand the molecular basis of the interaction of α2 with DNA, we have saturated with missense mutations the segment of α2 that is weakly homologous to a conserved prokaryote DNA-binding structure6–8 and to a portion of the higher eukaryote homoeo domain9,10 to ascertain the possible functional significance of this homology in α2. We report here that most of the amino-acid residues in α 2 which correspond to conserved amino acids in the prokaryote DNA-binding proteins and in the homoeo domain are essential for the two repressor activities of α 2, that is, the repression of a-specific genes and of haploid-specific genes. Mutations in a subset of these amino-acid residues more severely affect the ability to repress a-specific genes than haploid-specific genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mackay, V. L. & Manney, T. R. Genetics 76, 272–288 (1974).

    Google Scholar 

  2. Strathern, J. N., Hicks, J. B. & Herskowitz, I. J. molec. Biol. 147, 357–372 (1981).

    Article  CAS  Google Scholar 

  3. Astell, C. et al. Cell 27, 15–23 (1981).

    Article  CAS  Google Scholar 

  4. Tatchell, K., Nasmyth, K. A., Hall, B. D., Astell, C. & Smith, M. Cell 27, 25–35 (1981).

    Article  CAS  Google Scholar 

  5. Johnson, A. D. & Herskowitz, I. Cell 42, 237–247 (1985).

    Article  CAS  Google Scholar 

  6. Sauer, R. T., Doolittle, R. F., Lewis, M. & Pabo, C. O. Nature 298, 447–451 (1982).

    Article  CAS  ADS  Google Scholar 

  7. Ohlendorf, D. H., Anderson, W. F. & Matthews, B. W. J. molec. Evol. 19, 109–114 (1983).

    Article  CAS  ADS  Google Scholar 

  8. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  CAS  ADS  Google Scholar 

  9. McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. Cell 37, 403–408 (1984).

    Article  CAS  Google Scholar 

  10. Shepherd, J. C. W., McGinnis, W., Carrasco, A. E., De Robertis, E. M. & Gehring, W. J. Nature 310, 70–71 (1984).

    Article  CAS  ADS  Google Scholar 

  11. Wilson, K. & Herskowitz, I. Molec. cell. Biol. 4, 2420–2427 (1984).

    Article  CAS  Google Scholar 

  12. Jensen, R., Sprague, G. F. & Herskowitz, I. Proc. natn. Acad. Sci. U.S.A. 80, 3055–3059 (1983).

    ADS  Google Scholar 

  13. Pabo, C. O. & Sauer, R. T. A. Rev. Biochem. 53, 293–321 (1984).

    Article  CAS  Google Scholar 

  14. Wharton, R. P., Brown, E. L. & Ptashne, M. Cell 38, 361–369 (1984).

    Article  CAS  Google Scholar 

  15. Wharton, R. P. & Ptashne, M. Nature 316, 601–605 (1985).

    Article  CAS  ADS  Google Scholar 

  16. Ebright, R. H., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. Nature 311, 232–235 (1984).

    Article  CAS  ADS  Google Scholar 

  17. Weber, K., Platt, T., Ganem, D. & Miller, J. H. Proc. natn. Acad. Sci. U.S.A. 69, 3624–3628. (1972).

    Article  CAS  ADS  Google Scholar 

  18. Matthews, B. W., Ohlendorf, D. H., Anderson, W. F. & Takeda, Y. Proc. natn. Acad. Sci. U.S.A. 79, 1428–1432 (1982).

    Article  CAS  ADS  Google Scholar 

  19. Regulski, M. et al. Cell 43, 71–80 (1985).

    Article  CAS  Google Scholar 

  20. Poole, S. J., Kauvar, L. M. Drees, B. Kornberg, T. Cell 40, 37–43 (1985).

    Article  CAS  Google Scholar 

  21. Levine, M., Rubin, G. M. & Tjian, R. Cell 38, 667–673 (1984).

    Article  CAS  Google Scholar 

  22. McGinnis, W. J., Hart, C. P., Gehring, W. J. & Ruddle, F. H. Cell 38, 675–680 (1984).

    Article  CAS  Google Scholar 

  23. Colberg-Poley, A. M. et al. Cell 43, 39–45 (1985).

    Article  CAS  Google Scholar 

  24. Joyner, A. L., Kornberg, F., Coleman, K. G., Cox, D. R. & Martin, G. R. Cell 43, 29–37 (1985).

    Article  CAS  Google Scholar 

  25. Carrasco, A. E., McGinnis, W., Gehring, W. J. & DeRobertis, E. M. Cell 37, 409–414 (1984).

    Article  CAS  Google Scholar 

  26. Nasmyth, K. A., Tatchell, K., Hall, B. D., Astell, C. & Smith, M. Nature 289, 244–250 (1981).

    Article  CAS  ADS  Google Scholar 

  27. Hall, M. N., Hereford, L. & Herskowitz, I. Cell 36, 1057–1065 (1984).

    Article  CAS  Google Scholar 

  28. Miller, A. M., MacKay, V. L. & Nasmyth, K. A. Nature 314, 598–603 (1985).

    Article  CAS  ADS  Google Scholar 

  29. MacKay, V. L. & Manney, T. R. Genetics 76, 255–271 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sprague, G. F., Rine, J. & Herskowitz, I. Nature 289, 250–252 (1981).

    Article  CAS  ADS  Google Scholar 

  31. Wells, J. A., Vasser, M. & Powers, D.B. Gene 34, 315–323 (1985).

    Article  CAS  Google Scholar 

  32. McNeil, J. B. & Smith, M. Molec. cell Biol. 5, 3545–3551 (1985).

    Article  CAS  Google Scholar 

  33. Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).

    Article  CAS  Google Scholar 

  34. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  35. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

  36. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratoy, New York(1982).

    Google Scholar 

  37. MacKay, V. L. Meth. Enzym. 101, 325–343 (1983).

    Article  CAS  Google Scholar 

  38. Ebright, R. H. in Protein Structure, Function, and Design (ed. Oxender, D.) (Liss, New York, in the press).

  39. Russell, D. W. et al. Molec. cell. Biol. (in the press).

  40. Ruby, S. W., Szostak, J. W. & Murray, A. W. Meth. Enzym. 101, 253–269 (1983).

    Article  CAS  Google Scholar 

  41. Rothstein, R. J., Esposito, R. E. & Esposito, M. S. Genetics 85, 35–54 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, S., Smith, M. Homoeo-domain homology in yeast MATα2 is essential for repressor activity. Nature 320, 766–768 (1986). https://doi.org/10.1038/320766a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320766a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing