Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of end-inhibition in the visual cortex via interlaminar connections

Abstract

To understand the mechanisms by which the receptive field properties of visual cortical cells are generated, one must consider both the thalamic input to the cortex and the intrinsic cortical connections. In the cat striate cortex, layer 4 is the main recipient of input from the lateral geniculate nucleus, yet the cells in that layer possess several receptive field properties that are distinct from the geniculate input, including orientation specificity, binocularity, directionality and end-inhibition, the last of which allows cells to respond to edges of a restricted length1–4. These properties could be generated by connections within the layer, by its input from the claustrum5 or by the massive projection that layer 4 receives from layer 6 (refs 6–9). In the present study, we attempted to determine the functional role of the layer 6 to layer 4 projection by reversible inactivation of layer 6 using the inhibitory transmitter γ-aminobutyric acid (GABA). After inactivating layer 6, cells in layer 4 lost end-inhibition. Cells in layer 2+3, which receive their principal input from layer 4, were similarly affected. The elimination of end-inhibition was specific, other receptive field properties, such as direction selectivity or orientation specificity, remaining intact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Dreher, B. Invest. Ophthal. 11, 355–356 (1972).

    CAS  PubMed  Google Scholar 

  3. Gilbert, C. D. J. Physiol., Lond. 268, 391–421 (1977).

    Article  CAS  Google Scholar 

  4. Rose, D. J. Physiol., Lond. 271, 1–23 (1977).

    Article  CAS  Google Scholar 

  5. LeVay, S. & Sherk, H. J. Neurosci. 1, 956–980 (1981).

    Article  CAS  Google Scholar 

  6. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Lund, J. S., Henry, G. H., Macqueen, C. L. & Harvey, A. R. J. comp. Neurol. 184, 599–618 (1979).

    Article  CAS  Google Scholar 

  8. Katz, L. C., Burkhalter, A. & Dreyer, W. J. Nature 310, 498–500 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Martin, K. A. C. & Whitteridge, D. J. Physiol., Lond. 253, 463–504 (1985).

    Google Scholar 

  10. Malpeli, J. G., Schiller, P. H. & Colby, C. L. J. Neurophysiol. 46, 1102–1119 (1981).

    Article  CAS  Google Scholar 

  11. Malpeli, J. G. J. Neurophysiol. 49, 595–610 (1983).

    Article  CAS  Google Scholar 

  12. Newsome, W. T., Wurtz, R. H. Dürsteler & Mikami, A. Expl Brain Res. 58, 92–399 (1985).

    Article  Google Scholar 

  13. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  Google Scholar 

  14. Wiesel, T. N. & Gilbert, C. D. Q. Jl exp. Physiol. 68, 525–543 (1983).

    Article  CAS  Google Scholar 

  15. Baughman, R. W. & Gilbert, C. D. J. Neurosci. 1, 427–439 (1981).

    Article  CAS  Google Scholar 

  16. McGuire, B. A., Hornung, J.-P., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 4, 3021–3033 (1984).

    Article  CAS  Google Scholar 

  17. LeVay, S. J. comp. Neurol. 150, 53–86 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Peters, A. & Fairen, A. J. comp. Neurol. 181, 129–172 (1978).

    Article  CAS  Google Scholar 

  19. Ribak, C. E. J. Neurocytol. 7, 461–478 (1978).

    Article  CAS  Google Scholar 

  20. Hamos, J. E., Davis, P. L. & Sterling, P. J. comp. Neurol. 217, 449–457 (1983).

    Article  CAS  Google Scholar 

  21. Sillito, A. M. & Versiani, V. J. Physiol., Lond. 273, 775–790 (1977).

    Article  CAS  Google Scholar 

  22. Sherk, H. & LeVay, S. J. Neurosci. 3, 2121–2127 (1983).

    Article  CAS  Google Scholar 

  23. LeVay, S. & Sherk, H. J. Neurosci. 1, 993–1002 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolz, J., Gilbert, C. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320, 362–365 (1986). https://doi.org/10.1038/320362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320362a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing