Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An embryonic pattern of expression of a human fetal globin gene in transgenic mice

Abstract

During the evolution of the β-globin family gene in vertebrates, different globin genes acquired different developmental patterns of expression. In mammals, specific ‘embryonic’ β-like globins are synthesized in the earliest erythroid cells, which differentiate in the yolk sac of the embryo. In most mammals the embryonic globin chains are replaced by ‘adult’ β-globins in fetal and adult erythrocytes, which arise in the liver and bone marrow, respectively. However, in simian primates (including humans), a distinct ‘fetal’ type of β-like globin chain predominates in fetal erythroid cells1,2. Based on the pattern of DNA sequence homologies between different mammalian species, these fetal globin genes, Gγ and Aγ, are thought to have descended from an ancestral gene, ‘proto-γ’, which was embryonic in its pattern of expression3–5. In the mouse, as well as in most other mammalian species, the descendants of the proto-γ gene continue to function as embryonic genes5,6. To investigate the evolutionary changes that led to the ‘fetal recruitment’ of the γ-globin genes in primates, we have introduced the cloned human Gγ-globin gene into the mouse germ line. We report here that the human Gγ gene reverts to an embryonic pattern of expression in the developing mouse. This observation suggests that during evolution a shift occurred in the timing of expression of a trans-acting signal controlling the proto-γ gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kitchen, H. & Brett, I. Ann. N.Y. Acad. Sci. 241, 653–671 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Weatherall, D. J. & Clegg, J. B. The Thalassemia Syndromes 3rd edn (Blackwell, Oxford, 1981).

    Google Scholar 

  3. Czelusniak, J. et al. Nature 298, 297–300 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Hardison, R. C. Molec. Biol. Evol. 1, 390–410 (1984).

    CAS  PubMed  Google Scholar 

  5. Hill, A. et al. J. biol. Chem. 259, 3739–3747 (1984).

    CAS  PubMed  Google Scholar 

  6. Farace, M. G. et al. J. biol. Chem. 259, 7123–7128 (1984).

    CAS  PubMed  Google Scholar 

  7. Hardies, S. C., Edgell, M. H. & Hutchison, C. A. III, J. biol. Chem. 259, 3748–3756 (1984).

    CAS  Google Scholar 

  8. Harris, S., Barrie, P. A., Weiss, M. L. & Jeffries, A. J. J. molec. Biol. 180, 785–801 (1984).

    Article  CAS  Google Scholar 

  9. Goodman, M., Koop, B.F., Czelusniak, J. & Weiss, M.L. J. molec. Biol. 180, 803–823 (1984).

    Article  CAS  Google Scholar 

  10. Efstratiadis, A. et al. Cell 21, 653–668 (1980).

    Article  CAS  Google Scholar 

  11. Jahn, C. L. et al. Cell 21, 159–168 (1980).

    Article  CAS  Google Scholar 

  12. Fritsch, E. F., Lawn, R. M. & Maniatis, T. Cell 19, 959–972 (1980).

    Article  CAS  Google Scholar 

  13. Peschle, C. et al. Nature 313, 235–238 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Gordon, J., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Proc. natn. Acad. Sci. U.S.A. 77, 7380–7384 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Wagner, E. F., Stewart, T. A. & Mintz, B. Proc. natn. Acad. Sci. U.S.A. 78, 5016–5020 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Costantini, F. & Lacy, E. Nature 294, 92–94 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Brinster, R. L. et al. Cell 27, 223–231 (1981).

    Article  CAS  Google Scholar 

  18. Chada, K. et al. Nature 314, 377–380 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Magram, J., Chada, K. & Costantini, F. Nature 315, 338–340 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Townes, T.M., Lingrel, J.B., Brinster, R.L. & Palmiter, R.D. EMBO J. 4, 1715–1723 (1985).

    Article  CAS  Google Scholar 

  21. Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).

    Article  CAS  Google Scholar 

  22. Shen, S.-H., Slightom, J. L. & Smithies, O. Cell 26, 191–203 (1981).

    Article  CAS  Google Scholar 

  23. Costantini, F. & Lacy, E. J. cell. Physiol. Suppl. 1, 219–226 (1982).

    Article  CAS  Google Scholar 

  24. Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: Laboratory Manual (Cold Spring Harbor Laboratory, New York, in the press).

  25. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  26. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  27. Ley, T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6618–6622 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Charnay, P. et al. Cell 38, 251–263 (1984).

    Article  CAS  Google Scholar 

  29. Stamatoyannopoulos, G. et al. Blood 61, 530–539 (1983).

    CAS  PubMed  Google Scholar 

  30. Britten, R. J. & Davidson, E. H. Q. Rev. Biol. 46, 111–138 (1971).

    Article  CAS  Google Scholar 

  31. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  32. Dobson, D. E., Prager, E. M. & Wilson, A. C. J. biol. Chem. 259, 11607–11616 (1984).

    CAS  PubMed  Google Scholar 

  33. Collins, F. S. & Weissman, S. M. Prog. Nucleic Acid Res. molec. Biol. 31, 315–462 (1985).

    Article  Google Scholar 

  34. Marks, P. A. & Rifkind, R. A. A. Rev. Biochem. 47, 419–426 (1978).

    Article  CAS  Google Scholar 

  35. Willing, M. C., Neinhuis, A. W. & Anderson, W. F. Nature 277, 534–538 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Wright, S., deBoer, E., Grosveld, F. G. & Flavell, R. A. Nature 305, 333–336 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Papayannopoulou, T. et al. Proc. natn. Acad. Sci. U.S.A. 82, 780–784 (1985).

    Article  ADS  CAS  Google Scholar 

  38. Anagnou, N. P., Karlsson, S., Moukton, A. D., Keller, G. & Neinhuis, A. W. EMBO J. (in the press).

  39. Charnay, P. & Henry, L. EMBO J. (submitted).

  40. Robins, D. M., Pack, I., Seeburg, P. H. & Axel, R. Cell 29, 623–631 (1982).

    Article  CAS  Google Scholar 

  41. Phillips, S. J., Hardies, S. C., Jahn, C. L., Edgell, M. H. & Hutchison, C. A. III J. biol. Chem. 259, 7947–7954 (1984).

    CAS  PubMed  Google Scholar 

  42. Hutchison, C. A. III, Hardies, S. C., Padgett, R. W., Weaver, S. & Edgell, M. H. J. biol. Chem. 259, 12881–12889 (1984).

    CAS  PubMed  Google Scholar 

  43. Rohrbaugh, M. L. & Hardison, R. C. J. molec. Biol. 164, 395–417 (1983).

    Article  CAS  Google Scholar 

  44. Chirgwin, J., Przybyla, A., MacDonald, R. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  45. Lozzio, C. B. & Lozzio, B. B. Blood 45, 321–334 (1975).

    CAS  Google Scholar 

  46. Benz, E. J. et al. Proc. natn. Acad. Sci. U.S.A. 77, 3509–3513 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chada, K., Magram, J. & Costantini, F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319, 685–689 (1986). https://doi.org/10.1038/319685a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319685a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing