Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D

Abstract

Botulinum toxins are known to block transmitter release at peripheral cholinergic synapses1, producing muscular weakness and paralysis. The toxins may also block adrenergic transmission2–5, although this effect is less well understood1. The mechanisms by which toxins act are unclear. They are proteins of relative molecular mass 150,000 and are structurally similar to tetanus toxin. It is generally accepted that a rise in intracellular calcium concentration is sufficient to trigger secretion by exocytosis6–13, but it is not known whether the toxins block secretion by preventing this Ca transient14,15 or whether they act downstream from Ca entry by interfering with the process of exocytosis itself. We have attempted to resolve these questions in the case of the adrenergic system by studying the effects of botulinum toxins (types A, B, D and E) on the secretory response of isolated bovine adrenal medullary cells maintained in culture16. The cells were either challenged with various secretagogues or rendered leaky and challenged directly with Ca buffers. We report here that botulinum toxin type D inhibits secretion in a time- and dose-dependent manner, the results being entirely consistent with the idea that the toxin acts at or near the site of exocytosis rather than at the sites controlling the rise in free Ca.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simpson, L. L. Pharmac. Rev. 33, 155–188 (1981).

    CAS  Google Scholar 

  2. Rand, M. J. & Whaler, B. C. Nature 206, 588–591 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Westwood, D. A. & Whaler, B. C. Br. J. Pharmac. Chemother. 33, 21–31 (1968).

    Article  CAS  Google Scholar 

  4. Bond, J. C. Fedn Proc. 28, 415 (1969).

    Google Scholar 

  5. Holman, M. E. & Spitzer, N. C. Br. J. Pharmac. 47, 431–433 (1973).

    Article  CAS  Google Scholar 

  6. Douglas, W. W. & Rubin, R. P. J. Physiol., Lond. 167, 288–310 (1963).

    Article  CAS  Google Scholar 

  7. Katz, B. & Miledi, R. J. Physiol., Lond. 192, 407–436 (1967).

    Article  CAS  Google Scholar 

  8. Miledi, R. Proc. R. Soc. B183, 421–425 (1973).

    ADS  CAS  Google Scholar 

  9. Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

    Article  CAS  Google Scholar 

  10. Miledi, R. & Parker, I. Proc. R. Soc. B212, 197–211 (1981).

    ADS  CAS  Google Scholar 

  11. Baker, P. F. & Knight, D. E. Phil. Trans. R. Soc. B296, 83–103 (1981).

    Article  CAS  Google Scholar 

  12. Knight, D. E. & Kesteven, N. T. Proc. R. Soc. B218, 177–199 (1983).

    ADS  CAS  Google Scholar 

  13. Baker, P. F. & Knight, D. E. Trends Neurosci. 7(4), 120–126 (1984).

    Article  CAS  Google Scholar 

  14. Hirokawa, N. & Heuser, J. E. J. Cell Biol. 88, 160–171 (1981).

    Article  CAS  Google Scholar 

  15. Gunderson, C. B., Katz, B. & Miledi, R. Proc. R. Soc. B216, 369–376 (1982).

    ADS  Google Scholar 

  16. Mizobe, F., Kozousek, V., Dean, D. M. & Livett, B. G. Brain Res. 178, 555–566 (1979).

    Article  CAS  Google Scholar 

  17. Knight, D. E. & Baker, P. F. Q. J. exp. Physiol. 68, 123–143 (1983).

    Article  CAS  Google Scholar 

  18. Duchen, L. W. & Tonge, D. A. J. Physiol., Lond. 228, 157–172 (1973).

    Article  CAS  Google Scholar 

  19. Bevan, S. & Wendon, L. M. B. J. Physiol., Lond. 348, 1–17 (1984).

    Article  CAS  Google Scholar 

  20. Dolly, J. O., Black, J., Williams, R. S. & Melling, J. Nature 307, 457–460 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Williams, R. S., Tse, C-K., Dolly, J. O., Hambleton, P. & Melling, J. Eur. J. Biochem. 131, 437–445 (1983).

    Article  CAS  Google Scholar 

  22. Simpson, L. L. Brain Res. 305, 177–180 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Simpson, L. L. J. Pharmac. exp. Ther. 229, 182–187 (1984).

    CAS  Google Scholar 

  24. Baker, P. F. & Rink, T. J. J. Physiol., Lond. 253, 593–620 (1975).

    Article  CAS  Google Scholar 

  25. Baker, P. F. & Knight, D. E. Nature 276, 620–622 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Knight, D. E. & Baker, P. F. J. Membrane Biol. 68, 107–140 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, D., Tonge, D. & Baker, P. Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317, 719–721 (1985). https://doi.org/10.1038/317719a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317719a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing