Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

Abstract

The extended non-thermal radio sources G357.7–0.1 and G5.3–1.0 in the galactic bulge have about the same energy content in the form of relativistic particles and magnetic fields as the brightest ordinary supernova remnants (original energy input 1050.5 erg), but differ from the latter in having a marked axial symmetry1,2. Their surface brightness gradually fades away towards one end of the symmetry axis, and at the opposite end one finds a compact radio source. The recently discovered radio source G18.95–1.1 (ref. 3) may belong to the same category. Helfand and Becker4 have argued that these structural properties can be explained most plausibly if these ‘remnants’ were produced by the ejection of matter with high kinetic energy by accreting binary systems at a rate 1037 erg s−1, the ejection lasting for several times 105 yr while the systems were travelling through the interstellar medium with a speed of 100 km s−1. We show here that the only type of neutron star binary that can fulfil both the condition of longevity and of a continuous high-mass transfer rate is a relatively wide binary in which the companion of the neutron star is a low-mass giant, with an orbital period of the order of weeks to months. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources5,6 as well as the progenitors of the two wide radio pulsar binaries7–9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaver, P. A., Salter, C. J., Patniack, A. R., van Gorkom, J. H. & Hunt, G. C. Nature 313, 113–115 (1985).

    Article  ADS  Google Scholar 

  2. Becker, R. H. & Helfand, D. J. Nature 313, 115–118 (1985).

    Article  ADS  Google Scholar 

  3. Fürst, E., Reich, W., Reich, P., Sofue, Y. & Handa, T. Nature 314, 720–721 (1985).

    Article  ADS  Google Scholar 

  4. Helfand, D. J. & Becker, R. H. Nature 313, 118–119 (1985).

    Article  ADS  Google Scholar 

  5. Webbink, R. F., Rappaport, S. & Savonije, G. J. Astrophys. J. 270, 678–693 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Taam, R. E. Astrophys. J. 270, 694–699 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Joss, P. C. & Rappaport, S. Nature 304, 419–421 (1983).

    Article  ADS  Google Scholar 

  8. Savonije, G. J. Nature 304, 422–423 (1983).

    Article  ADS  Google Scholar 

  9. Paczynski, B. Nature 304, 421–422 (1983).

    Article  ADS  Google Scholar 

  10. Margon, B. A. Rev. Astr. Astrophys. 22, 507–536 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Geldzhaler, B. J., Fomalont, E. B., Hilldrup, K. & Corey, B. E. Astr. J. 86, 1036–1043 (1981).

    Article  ADS  Google Scholar 

  12. Fomalont, E. B., Geldzhaler, B. J., Hjellming, R. M. & Wade, C. M. Astrophys. J. 275, 802–807 (1983).

    Article  ADS  Google Scholar 

  13. Geldzhaler, B. J. et al. Astrophys. J. Lett. 273, L65–L69 (1983).

    Article  ADS  Google Scholar 

  14. Bradt, H. V. D. & McClintock, J. E. A. Rev. Astr. Astrophys. 21, 13–66 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Shaver, P. et al. Astrophys. Lett. (in the press).

  16. van den Heuvel, E. P. J. & Taam, R. E. Nature 309, 235–237 (1984).

    Article  ADS  Google Scholar 

  17. Savonije, G. J. in Accretion Driven Stellar X-ray Sources, 343–366 (Cambridge University Press,1983).

    Google Scholar 

  18. Taam, R. E., Bodenheimer, P. & Ostriker, J. Astrophys. J. 222, 269–280 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Bodenheimer, P. & Taam, R. E. Astrophys. J. 280, 771–779 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Meyer, F. & Meyer-Hofmeister, E. Astr. Astrophys. 78, 167–176 (1979).

    ADS  Google Scholar 

  21. Rappaport, S., Joss, P. C. & Webbink, R. F. Astrophy. J. 254, 616–640 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Rappaport, S., Verbunt, F. & Joss, P. C. Astrophys. J. 275, 713–731 (1983).

    Article  ADS  Google Scholar 

  23. Paczynski, B. Acta astr. 20, 47–58 (1970).

    ADS  CAS  Google Scholar 

  24. Kippenhahn, R. Astr. Astrophys. 102, 293–295 (1981).

    ADS  Google Scholar 

  25. Kudritzki, R. D. & Reimers, D. Astr. Astrophys. 70, 227–239 (1978).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Kool, M., van den Heuvel, E. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources. Nature 317, 599–601 (1985). https://doi.org/10.1038/317599a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317599a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing