Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters

Abstract

The activation of protein kinase C by diacylglycerol and by tumour promoters has implicated this enzyme in transmembrane signalling and in the regulation of the cell cycle1,2. In vitro studies revealed that catalytic activity requires the presence of calcium and phos-pholipids with a preference f or phosphatidylserine3. Diacylglycerol and tumour promoters such as phorbol esters bind to the enzyme4–7, leading to its activation while sharply increasing its affinity for Ca2+ and phospholipid. Addition of diacylglycerol analogues or phorbol esters to intact cells results in the phosphorylation of specific polypeptides4,8–20. Several cellular processes, including hormone and neurotransmitter release and receptor down-regulation1–4, are modulated by the activation of protein kinase C, while phorbol ester-induced stimulation of the enzyme in whole cells has been associated with its translocation from the cytoplasm to the plasma membrane21,22. Moreover, the use of Ca2+ ionophores has revealed an apparent synergism between Ca2+ mobilization and protein kinase C activation2. This synergism has recently also been found to apply to receptor down-regulation (ref. 23 and accompanying paper24). Here we describe a reconstitution system in which intracellular translocation of protein kinase C and the synergism between Ca2+ and enzyme activators can be studied. The results suggest a rationale for concomitant Ca2+ mobilization and diacylglycerol formation in response to some hormones, neuro-transmitters and growth factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takai, Y. et al. Adv. Cyclic Nucleotide Res. 14, 301–313 (1981).

    CAS  PubMed  Google Scholar 

  2. Nishizuka, Y. Nature 308, 693–698 (1984); Trends biochem. Sci. 8, 13–16 (1983); Science 225, 1365–1370 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Takai, Y. et al. J. biol. Chem. 254, 3692–3695 (1979).

    CAS  PubMed  Google Scholar 

  4. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  5. Niedel, J. E., Kuhn, L. J. & Vandenbark, G. R. Proc. natn. Acad. Sci. U.S.A. 80, 36–40 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R. & Nishizuka, Y. J. biol. Chem. 258, 11442–11445 (1983).

    CAS  PubMed  Google Scholar 

  7. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. & Nishizuka, Y. Biochem. biophys. Res. Commun. 91, 1218–1224 (1979).

    Article  CAS  Google Scholar 

  8. Kaibuchi, K. et al. J. biol. Chem. 258, 6701–6704 (1983).

    CAS  PubMed  Google Scholar 

  9. Imaoka, T., Lynham, J. A. & Haslam, R. J. J. biol. Chem. 258, 11404–11414 (1983).

    CAS  PubMed  Google Scholar 

  10. Trevillyan, J. M., Kulkarni, R. K. & Byus, C. V. J. biol. Chem. 259, 897–902 (1984).

    CAS  PubMed  Google Scholar 

  11. Kelleher, D. J., Pessin, J. E., Ruoho, R. E. & Johnson, G. L. Proc. natn. Acad. Sci. U.S.A. 81, 4316–4320 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Jacobs, S., Sahyoun, N. E., Saltiel, A. R. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 80, 6211–6213 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Iwashita, S. & Fox, C. F. J. biol. Chem. 259, 2559–2567 (1984).

    CAS  PubMed  Google Scholar 

  14. Cochet, C., Gill, G. N., Meisenhelder, J., Cooper, J. A. & Hunter, T. J. biol. Chem. 259, 2553–2558 (1984).

    CAS  PubMed  Google Scholar 

  15. May, W. S. Jr, Sahyoun, N. E., LeVine, H. III, Jacobs, S. & Cuatrecasas, P. Clin. Res. 32, 498A (1984).

  16. May, S., Jacobs, S. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 81, 2016–2020 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Naka, M., Nishikawa, M., Adelstein, R. S. & Hidaka, H. Nature 306, 490–492 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Huang, C.-K., Hill, J. M. Jr, Bormann, B. J., Mackin, W. M. & Becker, E. L. J. biol. Chem. 259, 1386–1389 (1984).

    CAS  PubMed  Google Scholar 

  19. Werth, D. K., Niedel, J. E. & Pastan, I. J. biol. Chem. 258, 11423–11426 (1983).

    CAS  PubMed  Google Scholar 

  20. Kawamoto, S. & Hidaka, H. Biochem. biophys. Res. Commun. 118, 736–742 (1984).

    Article  CAS  Google Scholar 

  21. Kraft, A. S., Andersen, W. B., Cooper, H. L. & Sando, J. J. J. biol. Chem. 257, 13193–13196 (1982).

    CAS  PubMed  Google Scholar 

  22. Kraft, A. S. & Anderson, W. B. Nature 301, 621–623 (1983).

    Article  ADS  CAS  Google Scholar 

  23. May, W. S., Sahyoun, N., Sensenbrenner, L. L. & Cuatrecasas, P. Blood 64, Suppl. 1, 479 (1984).

    Google Scholar 

  24. May, W. S., Sahyoun, N., Wolf, M. & Cuatrecasas, P. Nature 317, 549–551 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Ling, E. & Sapirstein, V. Biochem. biophys. Res. Commun. 120, 291–298 (1984).

    Article  CAS  Google Scholar 

  26. Kajikowa, N. et al. Biochem. biophys. Res. Commun. 116, 743–750 (1983).

    Article  Google Scholar 

  27. White, J. R. et al. J. biol. Chem. 259, 8605–8611 (1984).

    CAS  PubMed  Google Scholar 

  28. Wolf, M., Sahyoun, N., LeVine, H. III & Cuatrecasas, P. Biochem. biophys. Res. Commun. 122, 1268–1275 (1984).

    Article  CAS  Google Scholar 

  29. Fabiato, A. & Fabiato, F. J. Physiol., Paris 75, 463–506 (1979).

    CAS  Google Scholar 

  30. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M., LeVine, H., May, W. et al. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature 317, 546–549 (1985). https://doi.org/10.1038/317546a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317546a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing