Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeorotation of the Troodos microplate, Cyprus

Abstract

The Troodos ophiolite represents one of the best preserved fragments of ocean-floor crust that is exposed on land. As the extrusive series of the ophiolite retains a stable magnetization that is directed westward, the ocean crust is considered to have rotated anticlockwise through 90° since its formation in the Late Cretaceous1. To determine the timing of the rotation event, over 3,000 orientated samples have been collected from the ophiolite and from its in situ Turonian to Recent sedimentary cover. Here we report that pelagic chalks immediately overlying the highest extrusive lava units of the ophiolite complex give reliable magnetic vector directions indicating that at least 60° of rotation occurred before the Lower Eocene and that rotation was completed by the end of the Lower Eocene. Rotation cannot have occurred within a single late Miocene event, as reported previously2. Regional geological considerations support the rotation of only a small fragment of oceanic crust that was stranded adjacent to an active continental margin. In this tectonic setting the oblique consumption of oceanic crust beneath Troodos crust could provide the necessary driving force for tectonic rotation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vine, F. J. & Moores, E. M. Trans. Am. geophys. Un. 50, 131 (1969).

    Google Scholar 

  2. Shelton, A. W. & Gass, I. G. Ophiolites (ed. Panayiotou, A.) (Printco, Nicosia, 1980).

    Google Scholar 

  3. Moores, E. M. & Vine, F. J. Phil. Trans. R. Soc. A225, 417–467 (1971).

    Google Scholar 

  4. Wilson, R. A. M. Geol. Surv. Dep. Cyprus Mem. 1 (1959).

  5. Kidd, R. G. W. & Cann, J. R. Earth planet. Sci. Lett. 24, 151–155 (1974).

    Article  ADS  Google Scholar 

  6. Simonian, K. & Gass, I. G. Bull. geol. Soc. Am. 89, 1220–1230 (1977).

    Article  Google Scholar 

  7. Verosub, K. L. & Moores, E. M. J. geophys. Res. 86, 6335–6349 (1981).

    Article  ADS  Google Scholar 

  8. Blome, C. D. & Irwin, W. P. Geology 13, 401–404 (1985).

    Article  ADS  Google Scholar 

  9. Mantis, M. Bull. Sci. Res. Centre Cyprus, Epithris 3, 227–241 (1970).

    Google Scholar 

  10. Robertson, A. H. F. & Hudson, J. D. in Spec. Publ. int. Ass. Sedimentologists Vol. 1 (eds Hsü, K. J. & Jenkyns, H. C.) 403–436 (Blackwell, 1974).

    Google Scholar 

  11. Heller, F. J. Geophys. 42, 475–488 (1977).

    Google Scholar 

  12. Laj, C. et al. Tectonophysics 86, 45–67 (1982).

    Article  ADS  Google Scholar 

  13. Lauer, J.-P. Spec. Publ. geol. Soc. Lond. 17, 483–492 (1984).

    Article  ADS  Google Scholar 

  14. Van der Voo, R. & French, R. B. Earth Sci. Rev. 10, 99–119 (1974).

    Article  ADS  Google Scholar 

  15. Robertson, A. H. F. J. geol. Soc. Lond. 134, 269–292 (1977).

    Article  Google Scholar 

  16. Robertson, A. H. F. J. geol. Soc. Lond. 133, 447–466 (1977).

    Article  Google Scholar 

  17. Ealey, P. J. & Knox, G. J. Geologie Mijnb. 54, 85–100 (1975).

    Google Scholar 

  18. Robertson, A. H. F. & Woodcock, N. H. Bull. geol. Soc. Am. 90, 651–665 (1979).

    Article  Google Scholar 

  19. Robertson, A. H. F. & Woodcock, N. H. Trans. R. Soc. Lond. Spec. Publ. (in the press).

  20. Swarbrick, R. E. in Ophiolites (ed. Panayiotou, A.) 86–92 (Printco, Nicosia, 1980).

    Google Scholar 

  21. Atwater, T. Bull. geol. Soc. Am. 81, 3513–3526 (1970).

    Article  Google Scholar 

  22. Riddihough, R. P. Can. J. Earth Sci. 14, 384–396 (1977).

    Article  ADS  Google Scholar 

  23. Menard, H. W. J. geol. 86, 99–110 (1978).

    Article  ADS  Google Scholar 

  24. Fitch, T. J. J. geophys. Res. 77, 4432–4461 (1972).

    Article  ADS  Google Scholar 

  25. Beck, M. E. Tectonophysics 93, 1–11 (1983).

    Article  ADS  Google Scholar 

  26. Clube, T. M. M. & Robertson, A. H. F. Surveys in Geophysics (Reidel, Dordrecht, in the press).

  27. Schminke, H.-U. et al. Geology 11, 405–409 (1983).

    Article  ADS  Google Scholar 

  28. Robinson, P. T. et al. Geology 11, 400–404 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Robertson, A. H. F. & Dixon, J. E. Spec. Publ. geol. Soc. Lond. 17, 1–74 (1984).

    Article  ADS  Google Scholar 

  30. Pearce, J. A. et al. Spec. Publ. geol. Soc. Lond. 16, 77–94 (1984).

    Article  ADS  Google Scholar 

  31. Livermore, R. A. & Smith, A. G. Geology of the Taurus Belt (eds Tekeli, O. & Göncüoǧlu, M. C.) 1–10 (MTA, Ankara, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clube, T., Creer, K. & Robertson, A. Palaeorotation of the Troodos microplate, Cyprus. Nature 317, 522–525 (1985). https://doi.org/10.1038/317522a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317522a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing