Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes

Abstract

In African trypanosomes, antigenic variation is achieved through differential gene activation, with one antigen gene being expressed at a time among a large collection of antigen-specific sequences. Transcription of the antigen gene always takes place in a telomere, but different telomeres can alternatively act as the expression site1–4. Telomeric antigen genes can be expressed without apparent DNA rearrangement5–8, but they can also, like non-telomeric genes, have access to the telomeric expression site through a duplicative transposition mechanism resembling gene conversion7–10. We report here that, as previously suggested3,6, telomeric genes may use another route to be activated. This mechanism of gene activation is by reciprocal crossing-over upstream from the gene, in the so-called ‘barren’ region. This allows the antigen gene to be placed in the previously activated telomere, while inactivating the formerly expressed gene by recombination into a silent environment. At least for the telomeric antigen gene described here, three possible activation mechanisms coexist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Longacre, S. et al. Molec. cell. Biol. 3, 399–409 (1983).

    Article  CAS  Google Scholar 

  2. Van der Ploeg, L. H. T., Schwartz, D. C., Cantor, C. R. & Borst, P. Cell 37, 77–84 (1984).

    Article  CAS  Google Scholar 

  3. Pays, E. et al. Cell 35, 721–731 (1983).

    Article  CAS  Google Scholar 

  4. Myler, P. J., Allison, J., Agabian, N. & Stuart, K. Cell 39, 203–211 (1984).

    Article  CAS  Google Scholar 

  5. Young, J. R., Donelson, J. E., Majiwa, P. A. O., Shapiro, S. Z. & Williams, R. O. Nucleic Acids Res. 10, 803–819 (1982).

    Article  CAS  Google Scholar 

  6. Laurent, M. et al. Nature 308, 370–373 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Bernards, A. et al. Cell 36, 163–170 (1984).

    Article  CAS  Google Scholar 

  8. Myler, P., Nelson, R. G., Agabian, N. & Stuart, K. Nature 309, 282–284 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Laurent, M. et al. Nature 302, 263–266 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Pays, E. et al. Cell 34, 371–381 (1983).

    Article  CAS  Google Scholar 

  11. Pays, E., Laurent, M., Delauw, M. F. & Steinert, M. UCLA Symp. molec. cell. Biol. 20, 173–187 (1984).

    Google Scholar 

  12. Guyaux, M., Cornelissen, A. W. C. A., Pays, E., Steinert, M. & Borst, P. EMBO J. 4, 995–998 (1985).

    Article  CAS  Google Scholar 

  13. Liu, A. Y. C. Van der Ploeg, L. H. T., Rijsewijk, F. A. M. & Borst, P. J. molec. Biol. 167, 57–75 (1983).

    Article  CAS  Google Scholar 

  14. Pays, E., Lheureux, M. & Steinert, M. Nature 292, 265–267 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Weintraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Pays, E., Delauw, M. F., Laurent, M. & Steinert, M. Nucleic Acids Res. 12, 5235–5247 (1984).

    Article  CAS  Google Scholar 

  17. Bernards, A., Van Harten-Loosbroek, N. & Borst, P. Nucleic Acids Res. 12, 4135–4170 (1984).

    Article  Google Scholar 

  18. Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. Nature 303, 592–597 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Pays, E., Laurent, M., Delinte, K., Van Meirvenne, N. & Steinert, M. Nucleic Acids Res. 23, 8137–8147 (1983).

    Article  Google Scholar 

  20. Borst, P. et al. in 5th John Innes Symp., Genetic Rearrangements (eds Chater, K. F., Cullis, C. A., Hopwood, D. A., Johnston, A. W. B. & Woolhouse, H. W.) 207–234 (Sinauer, Sunderland, Massachusetts, 1983).

    Google Scholar 

  21. Rubnitz, J. & Subramani, S. Molec. cell. Biol. 4, 2253–2258 (1984).

    Article  CAS  Google Scholar 

  22. Campbell, D. A., Van Bree, M. P. & Boothroyd, J.C. Nucleic Acids Res. 12, 2759–2774 (1984).

    Article  CAS  Google Scholar 

  23. Van der Ploeg, L. H. T. et al. Nucleic Acids Res. 10, 5905–5923 (1982).

    Article  CAS  Google Scholar 

  24. Pays, E. Prog. Nucleic Acids Res. molec. Biol. 32 (in the press).

  25. Horowitz, H., Thorburn, P. & Haber, J. E. Molec. cell. Biol. 4, 2509–2517 (1984).

    Article  CAS  Google Scholar 

  26. Blackburn, E. H. & Szostak, J. W. A. Rev. Biochem. 53, 163–194 (1984).

    Article  CAS  Google Scholar 

  27. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  28. Van Meirvenne, N., Janssen, P. G. & Magnus, E. Ann. Soc. beige Méd. trop. 55, 1–23 (1975).

    CAS  Google Scholar 

  29. Schwartz, D. C. & Cantor, C. R. Cell 37, 67–75 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pays, E., Guyaux, M., Aerts, D. et al. Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes. Nature 316, 562–564 (1985). https://doi.org/10.1038/316562a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316562a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing