Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme carbon-isotope enrichments in evaporating brines

Abstract

We report here extreme 13C enrichments in the dissolved inorganic carbon pool (ΣCO2) in evaporating brines. These enrichments may influence the interpretation of the stable carbon isotope record of both inorganic and organic carbon deposited in saline environments. Carbon isotope values of ΣCO2 respond to types of carbonate inputs, rate of exchange with the atmospheric CO2 and to biological effects1,2. δ13C values of up to +14‰, (all values are reported here with respect to the PDB standard) for ΣCO2 from anoxic waters have been reported where methane production by CO2 reducing bacteria occurs3. We document an abiotic effect in evaporating brines which resulted in 13C enrichments of up to +16.5‰) in natural conditions (solar evaporation ponds used for potash production) and up to +34.9‰ in laboratory evaporation experiments, the most enriched δ13C values reported to date in oxic conditions. These extreme enrichments may result from a non-equilibrium gas-transfer isotope fractionation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turner, J. V., Fritz, P., Karrow, P. F. & Warner, B. G. Can. J. Earth Sci. 20, 599–613 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Rounick, J. S. & James, M. R. Limnol. Oceanogr. 29, 386–389 (1984).

    Article  ADS  Google Scholar 

  3. Stiller, M. & Magaritz, M. Limnol. Oceanogr. 19, 849–853 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Epstein, J. A. Hydrometallurgy 2, 572–576 (1976).

    Article  Google Scholar 

  5. Carpenter, J. H. Limnol. Oceanogr. 10, 141–144 (1965).

    Article  ADS  CAS  Google Scholar 

  6. Gat, J. in Stable Isotope Hydrology, 21–33 (IAEA, Vienna, 1981).

    Google Scholar 

  7. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Earth planet. Sei. Lett. 22, 169–176 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Schonfeld, I. & Held, S. Isr. Atom. Energy Comm. IA-1061 (1965).

  9. Sass, E. & Ben-Yaacov, S. Mar. Chem. 5, 183–199 (1977).

    Article  CAS  Google Scholar 

  10. Gat, J. R. Earth planet. Sci. Lett. 71, 361–376 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Katz, A., Kolodny, Y. & Nissenbaum, A. Geochim. cosmochim. Acta 41, 1609–1626 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Schidlowski, M. & Matzigkeit, U. Naturwissenschaften 71, 303–308 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Steinhorn, I. Isr. J. Earth Sci. 29, 191–196 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiller, M., Rounick, J. & Shasha, S. Extreme carbon-isotope enrichments in evaporating brines. Nature 316, 434–435 (1985). https://doi.org/10.1038/316434a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316434a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing