Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon-dioxide-induced exocytotic insertion of H+ pumps in turtle-bladder luminal membrane: role of cell pH and calcium

Abstract

The contents of endocytic vesicles and other intracellular organ-elles (such as Golgi and microsomes) are acidified by an elec-trogenic proton-translocating ATPase that is remarkably similar to that found in urinary epithelia1–10. We recently found that the number of H+ ATPases in the apical plasma membrane of these epithelia is regulated by exocytotic insertion of endocytic vesicles whose membranes contain this H+ pump2,10. Carbon dioxide, a major stimulus for urinary acidification, causes rapid fusion of these vesicles with the luminal membrane, thereby inserting these pumps there and increasing the rate of net transepithelial H+ secretion; CO2 also inhibits endocytic retrieval of the pumps from the luminal membrane11. Such reciprocal regulation of endocytosis and exocytosis by a physiological modulator makes this system particularly attractive for studying the cellular events regulating membrane fusion. Here we present evidence that CO2 induces exocytosis by a cascade of events, the first step of which is cytoplas-mic acidification. Cell acidification then increases calcium activity, which causes the fusion event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tycko, B. & Maxfield, F. R. Cell 28, 643–651 (1982).

    Article  CAS  Google Scholar 

  2. Gluck, S., Cannon, C. & Al-Awqati, Q. Proc. natn. Acad. Sci. U.S.A. 79, 4327–4331 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Gluck, S., Kelly, S. & Al-Awqati, Q. J. biol. Chem. 257, 9230–9233 (1982).

    CAS  PubMed  Google Scholar 

  4. Forgac, M., Cantley, L., Wiedemann, B., Altstiel, L. & Branton, D. Proc. natn. Acad. Sci. U.S.A. 80, 1300–1303 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Stone, D. K., Xie, X.-S. & Racker, E. J. biol. Chem. 258, 4059–5062 (1983).

    CAS  PubMed  Google Scholar 

  6. Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G. & Mellman, I. Proc. natn. Acad. Sci. U.S.A. 80, 3334–3338 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Glickman, J., Croen, K., Kelly, S. & Al-Awqati, Q. J. Cell Biol. 97, 1303–1308 (1983).

    Article  CAS  Google Scholar 

  8. Rees-Jones, R. & Al-Awqati, Q. Biochemistry 23, 2336–2340 (1984).

    Article  Google Scholar 

  9. Gluck, S. & Al-Awqati, Q. J. clin. Invest. 73, 1704–1710 (1984).

    Article  CAS  Google Scholar 

  10. Schwartz, G. J. & Al-Awqati, Q. J. clin. Invest. (in the press).

  11. Reeves, W., Gluck, S. & Al-Awqati, Q. Kidney Int. 23, 232 (Abstr.) (1983).

    Google Scholar 

  12. Steinmetz, P. R. Physiol. Rev. 54, 890–956 (1974).

    Article  CAS  Google Scholar 

  13. Baker, P. F. & Honerjager, P. Nature 273, 160 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Lea, T. J. & Ashley, C. C. Nature 175, 236–238 (1978).

    Article  ADS  Google Scholar 

  15. Lorenzen, M., Lee, C. O. & Windhager, E. E. Fedn Proc. 41, 1350 (1982).

  16. Alvarez-Leefmans, F. J., Rink, T. J. & Tsein, R. Y. J. Physiol., Lond. 315, 531–548 (1981).

    Article  CAS  Google Scholar 

  17. Tsien, R. Y. Biochemistry 19, 2396–2403 (1980).

    Article  CAS  Google Scholar 

  18. Tsien, R. Y., Pozzan, T. & Rink, T. J. J. Cell Biol. 94, 325–334 (1982).

    Article  CAS  Google Scholar 

  19. van Adelsberg, J. S. & Al-Awqati, Q. Kidney Int. 27, 290 (abstr.) (1985).

    Google Scholar 

  20. Roos, A. & Boron, W. Physiol. Rev. 61, 296–434 (1981).

    Article  CAS  Google Scholar 

  21. Cook, D. L., Ikeuchi, M. & Fujimoto, W. Y. Nature 311, 269–271 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Lorentzen, M., Taylor, A. & Windhager, E. E. Am. J. Physiol. 245, F188–F197 (1983).

    Google Scholar 

  23. Rossier, M., Rossier, B. C., Pfeiffer, J. & Kraehenbuhl, J. P. J. Membrane Biol. 48, 141–166 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, C., van Adelsberg, J., Kelly, S. et al. Carbon-dioxide-induced exocytotic insertion of H+ pumps in turtle-bladder luminal membrane: role of cell pH and calcium. Nature 314, 443–446 (1985). https://doi.org/10.1038/314443a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314443a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing