Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational radiation from a solid-crust neutron star

Abstract

The measured period derivative1–3 for the millisecond pulsar PSR1937 + 214 is 1.05×10−19, whereas the present upper limit5 for PSR1953 + 296 is <4.2×10−17. For electromagnetic braking, the combination of rapid rotation with such small period derivatives requires a small (108 G) magnetic field. A natural association between rapid rotation and small magnetic field is provided by accretion spin-up scenarios7–9. Here we address the analogous problem for gravitational radiation. Balancing gravitational radiation power against the rate of rotational energy loss, we find that if the effective triaxiality εeff exceeds εmax10−9, gravitational radiation alone would spin a millisecond pulsar down at a faster rate than the observed . We show that εeff<<εmax, so that gravitational radiation is not likely to play a major role in the evolution of millisecond pulsars even in the absence of damping. Damping times for precession of the solid crust are estimated to be <2×l03 yr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashworth, M., Lyne, A. G. & Smith, F. G. Nature 301, 313–314 (1983).

    Article  ADS  Google Scholar 

  2. Backer, D. C., Kulkarni, R. S. & Taylor, J. H. Nature 301, 314–315 (1983).

    Article  ADS  Google Scholar 

  3. Backer, D. C. in Proc. Workshop on Millisecond Pulsars (eds Reynolds, S. & Stinebring, D.) 3–8 (NRAO, Greenbank, West Virginia, 1984).

    Google Scholar 

  4. Backer, D. C., Kulkarni, R. S., Heiles, C., Davis, M. M. & Goss, W. M. Nature 300, 615–618 (1982).

    Article  ADS  Google Scholar 

  5. Boriakoff, V., Buccheri, R., Fauci, F., Turner, K. & Davis, M. in Proc. Workshop on Millisecond Pulsars (eds Reynolds, S. & Stinebring, D.) 24–29 (NRAO, Greenbank, West Virginia, 1984).

    Google Scholar 

  6. Boriakoff, V., Buccheri, R. & Fauci, F. Nature 304, 417–419 (1983).

    Article  ADS  Google Scholar 

  7. Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. Nature 300, 728–730 (1982).

    Article  ADS  Google Scholar 

  8. Radhakrishnan, V. & Srinivasan, G. Curr. Sci. 51, 1096–1099 (1982).

    ADS  Google Scholar 

  9. Fabian, A. C., Pringle, J. E., Verbunt, F. & Wade, K. A. Nature 301, 222–223 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Pines, D. & Shaham, J. Phys. Earth planet. Inter. 6, 103–115 (1972).

    Article  ADS  Google Scholar 

  11. Wagoner, R. Astrophys J. 278, 345–348 (1984).

    Article  ADS  Google Scholar 

  12. Friedman, J. L. Phys. Rev. Lett. 51, 11–14 (1983).

    Article  ADS  Google Scholar 

  13. Landau, L. D. & Lifshitz, E. M. Mechanics Ch. 6 (Pergamon, Oxford, 1976).

    MATH  Google Scholar 

  14. Weinberg, S. Gravitation and Cosmology Ch. 10 (Wiley, New York, 1972).

    Google Scholar 

  15. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs and Neutron Stars Ch. 16 (Wiley-Interscience, New York, 1983).

    Book  Google Scholar 

  16. Pandharipande, V. R., Pines, D. & Smith, R. A. Astrophys. J. 208, 550–566 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Ruderman, M. A. Nature phys. Sci. 223, 597–598 (1969).

    Article  Google Scholar 

  18. Baym, G. & Pines, D. Ann. Phys. 66, 816–835 (1971).

    Article  ADS  Google Scholar 

  19. Smoluchowski, R. Phys. Rev. Lett. 24, 923–925 (1970).

    Article  ADS  Google Scholar 

  20. Pines, D. & Shaham, J. Nature phys. Sci. 235, 43–49 (1972).

    Article  ADS  Google Scholar 

  21. Shaham, J. Astrophys. J. 214, 251–260 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Alpar, M. A., Anderson, P. W., Pines, D. & Shaham, J. Astrophys. J. 276, 325–334 (1984).

    Article  ADS  Google Scholar 

  23. Pines, D. & Alpar, M. A. Proc. Workshop on Millisecond Pulsars (eds Reynolds, S. & Stinebring, D.) 161–169 (NRAO, Greenbank, 1984).

    Google Scholar 

  24. Bondi, H. & Gold, T. Mon. Not. R. astr. Soc. 115, 41–46 (1955).

    Article  ADS  Google Scholar 

  25. Pines, D. & Shaham, J. Nature 248, 483–486 (1974).

    Article  ADS  Google Scholar 

  26. Alpar, M. A., Langer, S. A. & Sauls, J. A. Astrophys. J. 282, 533–541 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpar, M., Pines, D. Gravitational radiation from a solid-crust neutron star. Nature 314, 334–336 (1985). https://doi.org/10.1038/314334a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314334a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing