Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds

Abstract

An important question in understanding substrate binding by proteins is how charged groups are stabilized in the absence of their solvation shell. We have addressed this question here by solving the structure of the sulphate-binding protein of Salmonella typhimurium with bound substrate at 2.0 Å resolution. The results are remarkable in that the charged oxygen atoms of the sulphate molecule, which is buried and completely inaccessible to the solvent, are not stabilized by the formation of salt-bridges but by hydrogen bonds donated by specific residues of the protein. These hydrogen bonds are in turn coupled via peptide units to several resonating hydrogen bonding systems. These findings may be of general significance for the role of electrostatic interactions in protein structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Quiocho, F. A. & Vyas, N. K. Nature 310, 381–386 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Vyas, N. K., Vyas, M. N. & Quiocho, F. A. Proc. natn. Acad. Sci. U.S.A. 80, 1792–1796 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Saper, M. A. & Quiocho, F. A. J. biol. Chem. 258, 11057–11062 (1983).

    CAS  PubMed  Google Scholar 

  4. Landick, R. & Oxender, D. L. in Bacterial Transport (ed. Martonosi, A. N.) 81–88 (Plenum, New York, 1982).

    Google Scholar 

  5. Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (Indian Academy of Sciences, International Union of Crystallography, Bangalore, 1980).

    Google Scholar 

  6. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 517–526 (1971).

    Article  Google Scholar 

  7. Pauling, L. The Nature of the Chemical Bond, 325 (Cornell University Press, Ithaca, 1966).

    Google Scholar 

  8. Hol, W. G. J., van Duijnen, P. T. & Berendsen, H. J. C. Nature 273, 443–446 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Rees, D. C. J. molec. Biol. 141, 323–326 (1980).

    Article  CAS  Google Scholar 

  10. Perutz, M. F., Kendrew, J. C. & Watson, H. C. J. molec. Biol. 13, 669–678 (1965).

    Article  CAS  Google Scholar 

  11. Blundell, T., Barlow, D., Borkakoti, N. & Thornton, J. Nature 306, 281–283 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Smith, W. W., Burnett, R. M., Darling, G. D. & Ludwig, M. L. J. molec. Biol. 117, 195–225 (1977).

    Article  CAS  Google Scholar 

  13. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  14. Miller, D. M. III, Olson, J. S., Pflugrath, J. W. & Quiocho, F. A. J. biol. Chem. 258, 13665–13672 (1983).

    CAS  PubMed  Google Scholar 

  15. Isihara, H. & Hogg, R. W. J. biol Chem. 255, 4614–4618 (1980).

    CAS  PubMed  Google Scholar 

  16. Lesk, A. M. & Hardman, K. D. Science 216, 539–540 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Jones, T. A. in Computational Crystallography (ed. Sayre, D.) 3303–3317 (Clarendon, Oxford, 1982).

    Google Scholar 

  18. Pflugrath, J. W., Saper, M. A. & Quiocho, F. A. in Methods and Applications in Crystallographic Computing (eds Hall, S. & Ashida, T.) 404–407 (Clarendon, Oxford, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflugrath, J., Quiocho, F. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985). https://doi.org/10.1038/314257a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314257a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing