Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of single base substitutions in total genomic DNA

Abstract

Certain single base substitutions causing genetic diseases1–4 or resulting in polymorphisms linked to mutant alleles5–7, alter a restriction enzyme cleavage site and can therefore be detected in total genomic DNA using DNA blots. Many base substitutions do not lead to an altered restriction site, but these can be detected using synthetic oligonucleotides as hybridization probes if the DNA sequence surrounding the base substitution is known8,9. In the case of β-thalassaemia, where 22 different single base mutations have been identified10, a large number of probes would be required for diagnosis. An approach which was used to detect mutations in viral DNA involves the S1 nuclease treatment of heteroduplexes formed between wild-type and mutant DNA11. Although certain single base mismatches are cleaved by S1 nuclease (ref. 11 and T. Shenk, personal communication), many other mismatches examined by this procedure are not cleaved (B. Seed, personal communication; R.M.M., unpublished data). Heteroduplexes between mutant and wild-type subgenomic fragments of double-stranded reovirus RNA migrate slower than the corresponding homoduplexes in polyacrylamide gels containing 7 M urea12, but it is not known whether this method is applicable to DNA heteroduplexes containing single base mismatches. Here we describe a procedure that involves the electrophoretic separation of DNA heteroduplexes in a well-characterized gel system13. We show that four different human β-thalassaemia alleles with known single base mutations can be detected with as little as 5 µg of total genomic DNA. The method should be useful in the localization and diagnosis of mutations associated with genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flavell, R. A., Kooter, J. M., De Boer, E., Little, P. F. R. & Williamson, R. Cell 15, 25–41 (1978).

    Article  CAS  Google Scholar 

  2. Geever, R. F. et al. Proc. natn. Acad. Sci. U.S.A. 78, 5081–5085 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Chang, J. C. & Kan, Y. W. New Engl. J. Med. 307, 30–32 (1982).

    Article  CAS  Google Scholar 

  4. Orkin, S. H., Little, P. F. R., Kazazian, H. H. & Boehm, C. D. New Engl. J. Med. 307, 32–36 (1982).

    Article  CAS  Google Scholar 

  5. Kan, Y. W. & Dozy, A. M. Proc. natn. Acad. Sci. U.S.A. 75, 5631–5635 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Gusella, J. F. et al. Nature 306, 234–238 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Orkin, S. H. et al. Nature 296, 627–631 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Kidd, V. J., Wallace, R. B., Itakura, K. & Woo, S. L. C. Nature 304, 230–234 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Pirastu, M. et al. New Engl. J. Med. 309, 284–287 (1983).

    Article  CAS  Google Scholar 

  10. Orkin, S. H. & Kazazian, H. H. A. Rev. Genet. (in the press).

  11. Shenk, T. E., Rhodes, C., Rigby, P. W. J. & Berg, P. Proc. natn. Acad. Sci. U.S.A. 72, 989–993 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Ito, Y. & Joklik, W. K. Virology 50, 202–208 (1972).

    Article  CAS  Google Scholar 

  13. Fischer, S. G. & Lerman, L. S. Proc. natn. Acad. Sci. U.S.A. 80, 1579–1583 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Lerman, L. S., Fischer, S. G., Hurley, I., Silverstein, K. & Lumelsky, N. A. Rev. Biophys. Bioengng 13, 399–433 (1984).

    Article  CAS  Google Scholar 

  15. Treisman, R., Orkin, S. H. & Maniatis, T. Nature 302, 591–596 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Atweh, G. F., Hsu, H. & Forget, B. G. Blood 64 (Suppl. 1) (in the press).

  17. Treisman, R., Proudfoot, N. J., Shander, M. & Maniatis, T. Cell 29, 903–911 (1982).

    Article  CAS  Google Scholar 

  18. Solomon, E. & Bodmer, W. F. Lancet i, 923 (1979).

    Article  Google Scholar 

  19. Botstein, D., White, R., Skolnick, M. & Davis, R. Am. J. hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Westaway, D. & Williamson, R. Nucleic Acids Res. 9, 1777–1788 (1981).

    Article  CAS  Google Scholar 

  21. Spritz, R. A. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2455–2459 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).

    Article  CAS  Google Scholar 

  23. Levinson, A., Silver, D. & Seed, B. J. molec. appl. Genet. (in the press).

  24. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  25. Favalaro, J., Treisman, R. & Kamen, R. Meth. Enzym. 65, 718–749 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, R., Lumelsky, N., Lerman, L. et al. Detection of single base substitutions in total genomic DNA. Nature 313, 495–498 (1985). https://doi.org/10.1038/313495a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313495a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing