Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for diagenesis in proto-planetary bodies

Abstract

In the earliest stage of planetary-body formation, a proto-planet presumably consists of loosely-accumulated solid grains, or clusters of grains, with ice mantles and water-ice grains. Physical and chemical reactions, similar to diagenesis1 in the terrestrial permafrost2, may occur and may be enhanced by an interfacial water layer between solid grains and water-ice at temperatures below the melting point of water-ice. The thickness of the inter-facial water layer increases with rising temperature and/or pressure in the proto-planetary body. The model I propose here eases the thermal constraints imposed by earlier models3,4 of low-temperature aqueous alteration in primitive extraterrestrial materials in which formation of an aqueous medium promoting these alterations required complete melting of the water-ice. In the proto-planetary body, low-temperature alterations, for example, the formation of hydrated silicates, will take place because of the presence of an interfacial water layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berner, R. A. Early Diagenesis, A Theoretical Approach (Princeton University Press, 1980).

    Google Scholar 

  2. Anderson, D. M. & Morgenstern, N. R. in Permafrost, 257–288 (National Academy of Sciences, Washington D.C., 1973).

    Google Scholar 

  3. DuFresne, E. R. & Anders, E. Geochim. cosmochim. Acta 26, 1085–1114 (1962).

    Article  ADS  CAS  Google Scholar 

  4. Nozette, S. & Wilkening, L. L. Geochim. cosmochim. Acta 46, 557–563 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Donn, B. & Sears, G. W. Science 140, 1208–1211 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Grossman, L. & Larimer, J. W. Rev. Geophys. space Sci. 1, 71–101 (1974).

    Article  ADS  Google Scholar 

  7. Stephens, J. R. & Kothari, B. K. Moon Planets 19, 139–152 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Morfill, G. E. Icarus 53, 41–54 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Greenberg, R., Wacker, J. F., Hartmann, W. K. & Chapman, C. R. Icarus 35, 1–26 (1978).

    Article  ADS  Google Scholar 

  10. Wieneke, B. & Clayton, D. D. in Chondrules and their Origins (ed. King, A.) 284–295 (Lunar and Planetary Institute, Houston, 1983).

    Google Scholar 

  11. Bunch, T. E. & Chang, S. Geochim. cosmochim. Acta 44, 1543–1577 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Lebofsky, L. A. Astr. J. 85, 573–585 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Geophys. Res. Lett. 3, 109–112 (1976); Astrophys. J. 211, L107–L110 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Ugolini, F. C. Antarctica J. 11, 248–249 (1976).

    Google Scholar 

  15. Ugolini, F. C. & Jackson, M.L. in Antarctic Geoscience (ed. Craddock, C.) 1101–1108 (University of Wisconsin Press, Madison, 1982).

    Google Scholar 

  16. Gibson, E. K., Wentworth, S. J. & McKay, D.S. J. geophys. Res. 88 (suppl.), A912–A928 (1983).

    Article  CAS  Google Scholar 

  17. Gooding, J. L. Icarus 33, 483–513 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Berner, R. A. Rev. Mineral. 8, 111–134 (1981).

    CAS  Google Scholar 

  19. Anderson, D. M. in Rep. planet. Geol. Prog. (NASA Tech. Mem. 84211) 292–296 (1981).

    Google Scholar 

  20. Hallet, B. Proc. Int. Conf. Permafrost 4, 433–438 (National Academy of Sciences, Washington D.C., 1983).

    Google Scholar 

  21. Gooding, J. L. Lunar Planet. Sci. XV, 308–309 (1984).

  22. Clayton, D. D. Lunar Planet. Sci. XV 168–169 (1984).

  23. Donn, B. Astrophys. Space. Sci. 65, 167–171 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Nuth, J. A. & Donn, B. J. geophys. Res. 88 (suppl.), A847–A852 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Brownlee, D.E. in Protostars and Planets (ed. Gehrels, T.) 134–150 (University of Arizona Press, 1978).

    Google Scholar 

  26. Rietmeijer, F. J. M. & Mackinnon, I. D. R. Lunar Planet. Sci. XV, 687–688 (1984).

  27. Tomeoka, K. & Buseck, P. R. Lunar Planet. Sci. XV, 858–859 (1984).

  28. Hudson, B., Flynn, G. J., Fraundorf, P., Hohenberg, C. M. & Shirck, J. Science 211, 383–386 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Zinner, E., McKeegan, J. D. & Walker, R. M. Nature 305, 119–121 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Bradley, J. P., Brownlee, D. E. & Veblen, D. R. Nature 301, 473–477 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Wasson, J.T. Meteorites, Classification and Properties, 316 (Springer, Berlin, 1974).

    Google Scholar 

  32. Fraundorf, P., Brownlee, D. E. & Walker, R. M. in Comets (ed. Wilkening, L. L.) 383–409 (University of Arizona Press, 1982).

    Google Scholar 

  33. Fraundorf, P. Geochim. cosmochim. Acta 45, 915–943 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Clayton, R. N. & Mayeda, T. K. Earth planet. Sci. Lett. 67, 151–161 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Gooding, J. L. Meteoritics 19, (in the press).

  36. Öpik, E. Adv. Astr. Astrophy. 4, 302–336 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietmeijer, F. A model for diagenesis in proto-planetary bodies. Nature 313, 293–294 (1985). https://doi.org/10.1038/313293a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313293a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing