Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Toluene degradation products in simulated atmospheric conditions

Abstract

Atmospheric hydrocarbons have an important influence on the chemistry of the polluted lower atmosphere. Aromatic hydrocarbons or benzene derivatives comprise about 25–40% of gasoline in the US1 and they are widely employed as solvents. Toluene is the most commonly used aromatic hydrocarbon and is often the most abundant of all non-methane hydrocarbons in urban atmospheres. Typical urban toluene concentrations range from 1 to 50 p.p.b. (parts per 109)2,3 and clean-air concentrations up to 0.4 p.p.b. have been reported4. The aromatic hydrocarbons are destroyed by reaction with atmospheric hydroxyl radical (HO) and toluene remains in the atmosphere for about 50 daylight hours before reacting. Despite extensive study, toluene's reaction products are poorly understood5. Many reaction products have been identified, but most of these are ring-addition or side-chain oxidation products which retain the aromatic character of toluene. We have conducted a thorough study of toluene's oxidation products in simulated atmospheric conditions and present here an account of the products found and outline their probable formation and destruction mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Brien, R. J., Hightower, J. & Crocker, T. D. in The Alkylbenzenes Ch. 1 (ed. Peter, F. M.) (National Academy of Sciences, Washington DC, 1981).

    Google Scholar 

  2. Pellizzari, E. D. Information on the Characterization of Ambient Organic Vapors in Areas of High Chemical Pollution Control No. 68-02-2721 (US Environmental Protection Agency, North Carolina, 1979).

    Google Scholar 

  3. Sexton, K. & Westberg, H. Envir. Sci. Technol. 14, 329–332 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Rasmussen, R. A. & Khalil, M. A. K. Geophys. Res. Lett. 10, 1096–1099 (1983).

    Article  ADS  CAS  Google Scholar 

  5. O'Brien, R. J., Johnson, J. E. & Wilkerson, C. in The Alkylbenzenes Ch. 4 (ed. Peter, F. M.) (National Academy of Sciences, Washington DC, 1981).

    Google Scholar 

  6. O'Brien, R. J., Green, P. J., Nguyen, N-L., Doty, R. A. & Dumdei, B. E. Envir. Sci. Technol. 17, 183–186 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Slayback, J. R. B., Story, M. S. Ind. Res. Devl February 129–139 (1981).

  8. O'Brien, R. J., Dumdei, B. E., Hummel, S. V. & Yost, R. A. Analyt. Chem. (in the press).

  9. Nojima, K., Fukaya, K., Fukui, S., Kanno, S. Chemosphere 5, 247–252 (1974).

    Article  ADS  Google Scholar 

  10. Schwartz, W. Chemical Characterization of Model Aerosols (Rep. to U.S. Environmental Protection Agency, NTIS PB-238 557, 1974).

    Google Scholar 

  11. Akimoto, H., Hosbino, J., Inone, G., Okuda, M. & Washida, N. Bull. chem. Soc. Jap. 51, 2496–2502 (1978).

    Article  CAS  Google Scholar 

  12. Hoshino, J., Akimoto, J. & Okuda, M. Bull chem. Soc. Jap. 51, 718–724 (1978).

    Article  CAS  Google Scholar 

  13. Ishikawa, J., Watanabe, K. & Ando, W. Bull. chem. Soc. Jap. 51, 2174–2178 (1978).

    Google Scholar 

  14. O'Brien, R. J. et al. in Nitrogenous Air Pollutants Ch. 11 (ed. Grosjean, D.) (Ann Arbor Press, 1979).

    Google Scholar 

  15. Besemer, A. C. Atmos. Envir. 16, 1599–1602 (1982).

    Article  Google Scholar 

  16. Leone, J. A. & Seinfeld, J. H. Int. J. Chem. Kinet. 16, 159–174 (1984).

    Article  CAS  Google Scholar 

  17. Killus, J. P. & Whitten, G. Z. Atmos. Envir. 16, 1973–1988 (1982).

    Article  CAS  Google Scholar 

  18. Atkinson, R., Carter, W. P. L., Darnall, K. R., Winer, A. M. & Pitts, J. N. Jr Int. J. chem. Kinet. 12, 799–836 (1980).

    Google Scholar 

  19. O'Brien, R. J., Green, P. J. & Doty, R. A. J. phys. Chem. 83, 3302 (1979).

    Article  CAS  Google Scholar 

  20. O'Brien, R. J., Dumdei, B. E., Hummel, S. V. & Yost, R. A. 38th Northwest Regional Meet. Am. chem. Soc. Honolulu (submitted for publication).

  21. Lee, E. K. C. & Lewis, R. S. Adv. Photochem. 12, 53–55 (1980).

    Google Scholar 

  22. Takamuku, S., Matsimoto, H., Hori, A. & Sakurai, H. J. Am. chem. Soc. 102, 1441–1443 (1980).

    Article  CAS  Google Scholar 

  23. Calvert, J. G. & Stockwell, W. R. Envir. Sci. Technol. 17, 428A–439 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Atkinson, R., Aschmann, S. M., Winer, A. M. & Pitts, J. N. Jr Envir. Sci. Technol. 18, 370–374 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumdei, B., O'Brien, R. Toluene degradation products in simulated atmospheric conditions. Nature 311, 248–250 (1984). https://doi.org/10.1038/311248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311248a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing