Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ring-opened alkylated guanine is not repaired in Z-DNA

Abstract

Since the discovery of Z-DNA by X-ray analysis of the alternated hexanucleotide d(C-G)3 crystals1,2, numerous studies have shown that fragments of natural DNAs can adopt the Z conformation, the topological constraints being a major factor stabilizing this conformation3–10. Immunochemical assays using antibodies to Z-DNA provide strong evidence for the presence of Z fragments in chromosomes11–17. The biological role of Z-DNA is not yet known, but it might be involved in gene regulation. Proteins which bind specifically to Z-DNA have been isolated18 and interactions between Z-DNA and several cellular proteins19–25 have been studied. The ability of DNA repair enzymes to maintain the genome's integrity is of major importance to the cell. On alkylation of DNA by chemical carcinogens such as dimethyl sulphate, methyl methanesulphonate, methylnitrosourea or methylnitrosoguanidine, the main target is the N7 of the guanosine residue, yielding 7-methylguanine (m7G)26,27. In alkaline conditions, the imidazole ring of m7G opens up, yielding the ring-opened form 2,6-diamino-4-oxo-5-methylformamidopyrimidine (rom7G)28; this lesion is a block to DNA replication29. It occurs in vivo30 and is enzymatically removed by a DNA glycosylase31. Here we report that the lesion is not excised when present in DNA in the left-handed Z conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, A. H. J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Nordheim, A. et al. Cell 31, 309–318 (1982).

    Article  CAS  Google Scholar 

  4. Singleton, C. K., Klysik, J., Stindivant, S. M. & Wells, R. P. Nature 299, 312–316 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Peck, L. J. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 80, 6206–6210 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Stockton, J. F. et al. EMBO J. 2, 2123–2128 (1983).

    Article  CAS  Google Scholar 

  7. Nordheim, A. & Rich, A. Nature 303, 674–679 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Thomae, K., Beck, S. & Pohl, F. M. Proc. natn. Acad. Sci. U.S.A. 80, 5550–5553 (1983).

    Article  ADS  CAS  Google Scholar 

  9. DiCapua, E. et al. EMBO J. 2, 1531–1535 (1983).

    Article  CAS  Google Scholar 

  10. Lang, M. C., Malfoy, B., Freund, A. M., Daune, M. & Leng, M. EMBO J. 1, 1149–1153 (1982).

    Article  CAS  Google Scholar 

  11. Nordheim, A. et al. Nature 294, 417–422 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Lipps, H. J. et al. Cell 32, 435–441 (1983).

    Article  CAS  Google Scholar 

  13. Hill, R. J. & Stollar, D. B. Nature 305, 338–340 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Morgenegg, G., Celio, M. R., Malfoy, B., Leng, M. & Kuenzle, C. C. Nature 303, 540–543 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Viegas-Pequignot, E. et al. Proc. natn. Acad. Sci. U.S.A. 80, 5890–5894 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Arndt-Jovin, D. J., Robert-Nicoud, M., Zarling, D. A., Greider, C. & Jovin, T. Proc. natn. Acad. Sci. U.S.A. 80, 4344–4348 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Robert-Nicoud, M., Arndt-Jovin, D. J., Zarling, D. A. & Jovin, T. M. EMBO J. 3, 721–731 (1984).

    Article  CAS  Google Scholar 

  18. Nordheim, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7729–7733 (1983).

    Article  ADS  Google Scholar 

  19. Behe, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 78, 1619–1623 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Singleton, C. F., Kilpatrick, J. D. & Wells, R. D. J. biol. Chem. 259, 1963–1967 (1984).

    CAS  PubMed  Google Scholar 

  21. Durand, R. et al. EMBO J. 2, 1707–1714 (1983).

    Article  CAS  Google Scholar 

  22. Pfohl-Leszkowicz, A., Boiteux, S., Laval, J., Keith, G. & Dirheimer, G. Biochem. biophys. Res. Commun. 116, 682–688 (1983).

    Article  CAS  Google Scholar 

  23. Fried, M. G., Wu, H. M. & Crothers, D. M. Nucleic Acids Res. 11, 2479–2494 (1983).

    Article  CAS  Google Scholar 

  24. Nickol, J., Behe, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 79, 1771–1775 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Russel, W. C., Precious, B., Martin, S. R. & Bayley, P. M. EMBO J. 2, 1647–1653 (1983).

    Article  Google Scholar 

  26. Lawley, P. D. IARC scient. Publ. 12, 181–210 (1976).

    CAS  Google Scholar 

  27. Singer, B. & Grumberger, D. Molecular Biology of Mutagens and Carcinogens (Plenum, New York, 1983).

    Book  Google Scholar 

  28. Robins, R. K. & Townent, L. B. J. Am. chem. Soc. 85, 252 (1963).

    Google Scholar 

  29. Boiteux, S. & Laval, J. Biochem. biophys. Res. Commun. 110, 552–558 (1983).

    Article  CAS  Google Scholar 

  30. Beranek, D. T., Weiss, C. C., Evans, F. E., Chetsanga, C. J. & Kadlubar, F. F. Biochem. biophys. Res. Commun. 110, 625–631 (1983).

    Article  CAS  Google Scholar 

  31. Chetsanga, C. J. & Lindahl, T. Nucleic Acids Res. 6, 3673–3684 (1979).

    Article  CAS  Google Scholar 

  32. Boiteux, S., Belleney, J., Roques, B. P. & Laval, J. Nucleic Acids Res. (in the press).

  33. Malfoy, B., Rousseau, N. & Leng, M. Biochemistry 21, 5463–5467 (1982).

    Article  CAS  Google Scholar 

  34. Pohl, F. M., Jovin, T. M., Baehr, W. & Holbriok, J. J. Proc. natn. Acad. Sci. U.S.A. 69, 3805–3809 (1972).

    Article  ADS  CAS  Google Scholar 

  35. Rio, P. & Leng, M. Nucleic Acids Res. 11, 4947–4956 (1983).

    Article  CAS  Google Scholar 

  36. Chen, C., Knop, R. H. & Cohen, J. J. Biochemistry 22, 5468–5471 (1983).

    Article  CAS  Google Scholar 

  37. Corbin, S., Lavery, R. & Pullman, B. Biochim. biophys. Acta 9, 6539–6552 (1982).

    Google Scholar 

  38. Laval, J. Nature 269, 829–832 (1977).

    Article  ADS  CAS  Google Scholar 

  39. Laval, J., Pierre, J. & Laval, F. Proc. natn. Acad. Sci. U.S.A. 78, 852–855 (1981).

    Article  ADS  CAS  Google Scholar 

  40. Dürvald, H. & Hoffmann-Berling, H. J. molec. Biol. 34, 331–346 (1968).

    Article  Google Scholar 

  41. Leblanc, J. P., Martin, B., Cadet, J. & Laval, J. J. biol. Chem. 257, 3477–3483 (1982).

    CAS  PubMed  Google Scholar 

  42. Pierre, J. & Laval, J. Biochemistry 19, 5018–5024 (1980).

    Article  CAS  Google Scholar 

  43. Roy, K. B. & Miles, H. T. Biochem. biophys. Res. Commun. 115, 100–105 (1983).

    Article  CAS  Google Scholar 

  44. Pohl, F. M. & Jovin, T. M. J. molec. Biol. 67, 375–396 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagravère, C., Malfoy, B., Leng, M. et al. Ring-opened alkylated guanine is not repaired in Z-DNA. Nature 310, 798–800 (1984). https://doi.org/10.1038/310798a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310798a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing