Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores

Abstract

The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05–0.1 cm kyr−1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial–marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herman, Y. in Marine Geology and Oceanography of the Arctic Seas (ed. Herman, Y) 285 (Springer, New York, 1974).

    Book  Google Scholar 

  2. Clark, D. L., Whitman, R. R., Morgan, K. A. & Mackey, S. D. Geol. Soc. Am. Spec. Pap. 181, (1980).

  3. Herman, Y. & Hopkins, D. M. Science 209, 557–562 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Hunkins, K., Be, A. W. H., Opdyke, N. D. & Mathieu, A. The Late Glacial Ages, 215–237 (Yale University Press, Connecticut, 1971).

    Google Scholar 

  5. Worsley, T. R. & Herman, Y. Science 210, 323–325 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Hare, P. E., Hoering, T. C. & King, K. Jr Biogeochemistry of Amino Acids (Wiley, New York, 1980).

    Google Scholar 

  7. Wehmiller, J. F. Quat. Sci. Rev. 1, 83–120 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Mitterer, R. M. Geology 2, 425–428 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Mitterer, R. M. Earth planet. Sci. Lett. 28, 275–282 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Wehmiller, J. F. & Belknap, D. F. Quat. Res. 9, 330–348 (1978).

    Article  CAS  Google Scholar 

  11. McCartan, L. et al. Quat. Res. 18, 337–359 (1982).

    Article  CAS  Google Scholar 

  12. Miller, G. H., Hollin, J. T. & Andrews, J. T. Nature 281, 539–543 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Miller, G. H., Sejrup, H. P., Mangerud, J. & Andersen, B. G. Boreas 12, 107–124 (1983).

    Article  Google Scholar 

  14. Blunt, D. J. & Warnke, D. A. in Biogeochemistry of Amino Acida (eds Hare, P. E., Hoering, T. C. & King, K. Jr) 121–128 (Wiley, New York, 1980).

    Google Scholar 

  15. King, K. Jr & Hare, P. E. Yb Carnegie Instn Wash. 71, 691–598 (1972).

    Google Scholar 

  16. Bada, J. L. & Schroeder, R. A. Earth. planet. Sci. Lett. 15, 1–11 (1972).

    Article  ADS  CAS  Google Scholar 

  17. King, K. Jr & Neville, C. Science 195, 1333–1335 (1977).

    Article  ADS  CAS  Google Scholar 

  18. King, K. Jr in Biochemistry of Amino Acids (eds Hare, P. E., Hoering, T. E. & King, K.) 377–392 (Wiley, New York, 1980).

    Google Scholar 

  19. Duplessy, J. C., Chensward, L. & Vila, F. Science 188, 1208–1209 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Clement, B. M., Kent, D. V. & Opdyke, N. D. Phil. Trans. R. Soc. Lond. A306, 113–119 (1982).

    Article  ADS  Google Scholar 

  21. Verosub, K. L. Phil. Trans R. Soc. Lond. A306, 161–168 (1982).

    Article  ADS  Google Scholar 

  22. Holtedahl, H. J. sedim. Petrol. 29, 16–29 (1959).

    Google Scholar 

  23. Streeter, S. S., Belanger, P. E., Kellogg, T. B. & Duplessey, J. C. Quat. Res. 18, 72–90 (1982).

    Article  Google Scholar 

  24. Sejrup, H. P., Jansen, E., Erlenkeuser, H. & Holtedahl, H. Quat. Res. 21, 74–84 (1984).

    Article  Google Scholar 

  25. Feyling-Hanssen, R. W. Boreas 5, 77–94 (1976).

    Article  Google Scholar 

  26. Feyling-Hanssen, R. W. Mar. Micropaleont. 5, 153–184 (1980).

    Article  ADS  Google Scholar 

  27. Jenkins, G. & Murray, J. W. Stratigraphical Atlas of Fossil Foraminifera (Wiley, New York, 1981).

    Google Scholar 

  28. Smith, R. K. Archs Sci. Genève 23, 676–701 (1970).

    Google Scholar 

  29. Vilks, G., Wagner, F. J. E., & Pelletier, B. P. Bull geol Sur. Can. 303, (1979).

  30. Feyling-Hanssen, R. W. Norsk geol. unders. 225, (1964)

  31. Feyling-Hansse, E. W., Jørgensen, J. A., Knudsen, K. L. & Andersen, A-L.L. Bull. geol. Soc. Denm. 21, 67–317 (1971).

    Google Scholar 

  32. Sejrup, H. P., Holtedahl, H., Norvik, O. & Miljeteig, I. Boreas 9, 201–205 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sejrup, H., Miller, G., Brigham-Grette, J. et al. Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores. Nature 310, 772–775 (1984). https://doi.org/10.1038/310772a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310772a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing