Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A three-dimensional model of the fluid dynamics of radio-trail sources

Abstract

Extragalactic radio sources display a wide range of complex structures. The weaker sources have twin jets emerging from the nucleus of the parent galaxy, which bend and twist as they interact with the intergalactic medium (IGM); extreme examples are the radio-trail sources, such as NGC1265 (ref. 1) and 3C129 (ref. 2). More powerful sources typically show double structures with lobes and hotspots, but even these (such as Cygtius A (R. A. Perley, personal communication)) contain curved jets. Although our theoretical understanding of sources in terms of twin plasma-jets has advanced, numerical simulations3,4 have concentrated on axisym-metric models, whereas the investigation of radio-trail and complex sources demands three-dimensional simulations, despite the obvious computational difficulties. It is now generally accepted that radio-trail galaxies are produced by the motion of active galactic nuclei through the IGM in clusters of galaxies5. Models were initially proposed in which the ejected material consisted of independent blobs or plasmons6–8, but most evidence9,10 now supports ejection in a quasi-continuous jet9,11. Here we adopt the jet model and study the formation of twin-tail sources by the motion of the active nucleus through intra-cluster gas, using three dimensional fluid-dynamical simulations of a supersonic jet in a cross-wind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miley, G. K., Wellington, K. J. & van der Laan, H. Astr. Astrophys. 38, 381–390 (1975).

    ADS  Google Scholar 

  2. Downes, A. J. B. Mon. Not. R. astr. Soc. 190, 261–268 (1980).

    Article  ADS  Google Scholar 

  3. Norman, M.L., Smarr, L., Winkler, K.-H.A. & Smith, M. D. Astr. Astrophys. 113, 285–302 (1982)

    ADS  Google Scholar 

  4. Wilson, M. J. & Scheuer, P. A. G. Mon. Not. R. astr. soc. 205, 449–463 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Miley, G. K., Perola, G. G., van der Kruit, P. C. & van der Laan, H. Nature 237, 269–272 (1972).

    Article  ADS  Google Scholar 

  6. Cowie, L. L. & McKee, C. F. Astr. Astrophys. 43, 337–343 (1975).

    ADS  Google Scholar 

  7. Jaffe, W. J. & Perola, G. C. Astr. Astrophys. 26, 423–435 (1973).

    ADS  Google Scholar 

  8. Pacholczyk, A. G. & Scott, J. S. Astrophys. J. 203, 313–322 (1976).

    Article  ADS  Google Scholar 

  9. Jones, T. W. & Owen, F. N. Astrophys. J. 234, 818–824 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Owen, F. N., Burns, J. O. & Rudnick, L. Astrophys. J. Lett. 226, L119–L123 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Begelman, M. C., Rees, M. J. & Blandford, R. D. Nature 279, 770–773 (1979).

    Article  ADS  Google Scholar 

  12. Gentry, R. A., Martin, R. E. & Daly, B. J. J. computat. Phys. 1, 87–118 (1966).

    Article  ADS  CAS  Google Scholar 

  13. Book, D. L., Boris, J. P. & Hain, K. J computat. Phys. 18, 248–283 (1975).

    Article  ADS  Google Scholar 

  14. Sod, G. A. J. computat. Phys. 27, 1–31 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. Strang, G. SIAM J numer. Analysis 5, 507–517 (1968).

    Article  ADS  Google Scholar 

  16. Kamotani, Y. & Greber, I. Am. inst. Aeronaut, Astronaut. J. 10, 1425–1429 (1972).

    Article  Google Scholar 

  17. Fanaroff, B. L. & Riley, J. M. Mon. Not. R. astr. Soc. 167, 31P–35P (1974).

    Article  ADS  Google Scholar 

  18. Vallee, J. P., Bridle, A. H. & Wilson, A. S. Astrophys. J. 250, 66–78 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A., Gull, S. A three-dimensional model of the fluid dynamics of radio-trail sources. Nature 310, 33–36 (1984). https://doi.org/10.1038/310033a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310033a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing