Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two types of binary radio pulsars with different evolutionary histories

Abstract

The four known binary radio pulsars (Table 1) seem to fall into two different categories. Two of them, PSR0655 + 64 and PSR1913 + 16, have short orbital periods (<25 h)1,2and high mass functions, indicating companion masses >0.8 M (respectively, about 1 M and 1.4 M (ref. 2)). The other two, PSR0820 + 02 and PSR1953 + 29, have long orbital periods ( 120 days), nearly circular orbits and low almost identical mass functions of 3 × 10−3 M, suggesting companion masses of 0.2–0.4 M (refs 3–5). We point out here that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. Mass transfer from an evolved companion that is more massive than the neutron star (more precisely, mass ratio 0.85 (refs 6, 7)) tends to be unstable and to lead to runaway mass transfer and spiral-in resulting in a very short orbital period, whereas mass transfer from an evolved companion that is less massive than the neutron star is stable and leads to expansion of the orbit6,7. Furthermore, we point out that in the systems with a less massive companion, the neutron star most probably was formed by the accretion-induced collapse of a white dwarf. Such a model explains in a natural way why PSR1953 + 29 has a millisecond rotation period and why PSR0820 + 02 has not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taylor, J. H. & Weisberg, J. M. Astrophys. J. 253, 908–920 (1983).

    Article  ADS  Google Scholar 

  2. Damashak, M., Backus, P. R., Taylor, J. H. & Burkhardt, R. Astrophys, J. Lett. 253, L57–L60 (1982).

    Article  ADS  Google Scholar 

  3. Taylor, J. H. IAU Symp. 95, 361–369 (1981).

    ADS  CAS  Google Scholar 

  4. Manchester, R. N. et al. Astrophys. J. 268, 832–836 (1983).

    Article  ADS  Google Scholar 

  5. Boriakoff, V., Buccheri, R. & Fanci, F. Nature 304, 417–419 (1983).

    Article  ADS  Google Scholar 

  6. Plavec, M. Adv. Astr. Astrophys. 6, 201–278 (1968).

    Article  CAS  Google Scholar 

  7. Paczynski, B. A. Rev. Astr. Astrophys. 9, 183–208 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Paczynski, B. & Sienkiewicz, R. Acta Astr. 22, 73–91 (1972).

    ADS  Google Scholar 

  9. Paczynski, B. IAU Symp. 73, 75–80 (1976).

    ADS  Google Scholar 

  10. Webbink, R. F. IAU Colloq. 53, 426 (1979).

    ADS  Google Scholar 

  11. Taam, R. E., Bodenheimer, P. & Ostriker, J.P. Astrophys. J. 222, 269–280 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Meyer, F. & Meyer-Hofmeister, E. Astr. Astrophys. 78, 167–176 (1979).

    ADS  Google Scholar 

  13. Bodenheimer, P. & Taam, R. E. Astrophys. J. (in the press).

  14. Paczynski, B. Acta Astr. 20, 47–58 (1970).

    ADS  CAS  Google Scholar 

  15. Habets, G. IAU Symp. 105 (in the press).

  16. Delgado, A. J. & Thomas, H. C. Astr. Astrophys. 96, 142–145 (1981).

    ADS  CAS  Google Scholar 

  17. Iben, I. A Rev. Astr. Astrophys. 12, 215–256 (1974).

    Article  ADS  Google Scholar 

  18. Becker, S. A. Astrophys. J. Suppl. Ser. 45, 475–505 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Van den Heuvel, E. P. J. IAU Symp. 93, 155–175 (1981).

    ADS  Google Scholar 

  20. Flannery, B. P. & Van den Heuvel, E. P. J. Astr. Astrophys. 39, 61–67 (1975).

    ADS  Google Scholar 

  21. Srinivasan, G. & Van den Heuvel, E. P. J. Astr. Astrophys. 108, 143–147 (1982).

    ADS  CAS  Google Scholar 

  22. Smarr, L. L. & Blandford, R. Astrophys. J. 207, 574–588 (1976).

    Article  ADS  Google Scholar 

  23. Lyne, A. IAU Symp. 95, 423–436 (1981).

    ADS  Google Scholar 

  24. Radhakrishnan, V. Proc. Asian Pacific IAU Regional Meet., Bandung (ed. Hidayat, B.) (Bandung University, in the press).

  25. Flowers, E. & Ruderman, M. A. Astrophys. J. 215, 302–310 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Henrichs, H. in Accretion-driven Stellar X-ray Sources (eds Lewin, W. H. G. & Van den Heuvel, E. P. J.) Ch. 11 (Cambridge University Press, 1983).

  27. Alpar, M. A., Cheng, A. R., Ruderman, M. A. & Shaham, J. Nature 300, 728–731 (1982).

    Article  ADS  Google Scholar 

  28. Radhakrishan, V. & Srinivasan, G. Curr. Sci. 51, 1096–1099 (1982).

    ADS  Google Scholar 

  29. Rappaport, S. A. & Van den Heuvel, E. P. J. IAU Symp. 98, 327–346 (1982).

    ADS  Google Scholar 

  30. Priedhorsky, W. C. & Terrell, J. Nature 303, 681–683 (1983).

    Article  ADS  Google Scholar 

  31. Webbink, R. F., Rappaport, A. A. & Savonije, G. J. Astrophys. J. 270, 678–693 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Taam, R. E. Astrophys. J. 270, 694–699 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Savonije, G. J. Nature 304, 422–423 (1983).

    Article  ADS  Google Scholar 

  34. Paczynski, B. Nature 304, 421–422 (1983).

    Article  ADS  Google Scholar 

  35. Joss, P. C. & Rappaport, S. A. Nature 304, 419–421 (1983).

    Article  ADS  Google Scholar 

  36. Zahn, J. P. Astr. Astrophys. 57, 383–394 (1977); erratum 67, 162 (1978).

    ADS  Google Scholar 

  37. Savonije, G. J. Proc. Cambridge NATO Conf. on Interacting Binaries (Cambridge University Press, in the press).

  38. Bradt, H. V. D. & McClintock, J. E. A. Rev. Astr. Astrophys. 28, 13–66 (1983).

    Article  ADS  Google Scholar 

  39. Van den Heuvel, E. P. J. in Pulsars (eds Sieber, W. & Wielebinski, R.) 371–378 (Reidel, Dordrecht, (1981).).

    Google Scholar 

  40. Sion, E. M., Acierno, M. J. & Tomsczyk, S. Astrophys. J. 230, 832–838 (1979).

    Article  ADS  CAS  Google Scholar 

  41. Nomoto, K. Space Sci. Rev. 27, 563–570 (1980).

    Article  ADS  Google Scholar 

  42. Nomoto, K. Astrophys. J. 253, 798–810 (1982).

    Article  ADS  CAS  Google Scholar 

  43. Stevenson, D. J. J. Phys. Suppl. 41, (3),C2–53 (1980).

    Google Scholar 

  44. Bravo, E., Isern, J., Labay, J. & Canal, R. Astr. Astrophys. 124, 39–42 (1983).

    ADS  CAS  Google Scholar 

  45. Blandford, P. D. & De Campli, W. M. . in Pulsars (eds Sieber, W. & Wielebinski, R.) 371–378 (Reidel, Dordrecht, (1983).).

    Google Scholar 

  46. Whelan, J. & Iben, I. Astrophys. J. 186, 1007–1014 (1973).

    Article  ADS  CAS  Google Scholar 

  47. Helfand, D. J., Ruderman, M. A. & Shaham, J. Nature 304, 423–425 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Heuvel, E., Taam, R. Two types of binary radio pulsars with different evolutionary histories. Nature 309, 235–237 (1984). https://doi.org/10.1038/309235a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309235a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing