Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fanning of fracture zones and a three-dimensional model of the Mid-Atlantic Ridge

Abstract

Present-day spreading directions as represented by the active (transform fault) sections of fracture zones in the central North Atlantic do not fit a small circle pattern about a unique pole1–5, as recently confirmed by a ‘Gloria’ survey. Contrary to this pattern, which is geometrically required if ocean floor spreading is to occur6, the active transform fault directions show a convergence towards the east3. Because of the fanning of the present directions, the African and American plates are caught in what might be likened to a dovetail construction. To allow motion, the African plate must shrink about 2% in a north–south direction. Such a shrinkage might be accomplished by thermal contraction. Tension due to the horizontal component of this contraction has been proposed as the primary cause of fracture zones4,7. However, horizontal thermal contraction alone cannot explain the recorded pattern of spreading segments and transform faults, because it does not explain why transform faults converge to the east and diverge to the west. For this, an active driving mechanism is needed. We show here that the gravitational drive (ridge push) caused by thermal contraction in the lithosphere formed along a sinusoidal mid-ocean ridge delivers such a mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, J. D. & Luyendyk, B. P. Science 170, 727–729 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Pitman, W. C. III & Talwani, M. Science 174, 845–846 (1971).

    Article  ADS  Google Scholar 

  3. Phillips, J. D., Luyendyk, B. P. & Forsyth, D. W. Science 174, 846 (1971).

    Article  ADS  Google Scholar 

  4. Collette, B. J. Nature 251, 299–300 (1974).

    Article  ADS  Google Scholar 

  5. Fox, P. J., Pitman, W. C. III & Shephard, F. Science 165, 487–489 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Morgan, W. J. J. geophys. Res. 73, 1959–1982 (1968).

    Article  ADS  Google Scholar 

  7. Turcotte, D. L. J. geophys. Res. 79, 2573–2577 (1974).

    Article  ADS  Google Scholar 

  8. Somers, M. L. et al. in Proc. IEEE/IERE Sub-conference on Offshore Instrumentation and Communications, Tech. Session J., 16–24 (Oceanology International, London, 1978).

    Google Scholar 

  9. Minster, J. B. & Jordan, T. H. J. geophys. Res. 83, 5331–5354 (1978).

    Article  ADS  Google Scholar 

  10. Collette, B. J., Slootweg, A. P., Verhoef, J. & Roest, W. R. Proc. K. ned. Akad. Wet. B87, no. 1 (1984).

  11. Collette, B. J., Verhoef, J. & de Mulder, A. F. J. J. Geophys. 47, 91–98 (1980).

    Google Scholar 

  12. Collette, B. J., Schouten, H., Rutten, K. & Slootweg, A. P. Mar. geophys. Res. 2, 143–179 (1974).

    Google Scholar 

  13. Ramberg, I. B., Gray, D. F. & Raynolds, R. G. Bull. geol. Soc. Am. 88, 609–620 (1977).

    Article  Google Scholar 

  14. Collette, B. J. in 26th Congr. géol int., Abstr. II, 715, Paris (1980).

    Google Scholar 

  15. Lowrie, W. & Alvarez, W. Geology 9, 392–397 (1981).

    Article  ADS  Google Scholar 

  16. McKenzie, D. P. & Sclater, J. G. Bull. Volcanol. 33, 101–118 (1969).

    Article  ADS  Google Scholar 

  17. Sclater, J. G. & Francheteau, J. Geophys. J. R. astr. Soc. 20, 509–542 (1970).

    Article  ADS  Google Scholar 

  18. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–823 (1977).

    Article  ADS  Google Scholar 

  19. Richter, F. & McKenzie, D. J. Geophys. 44, 441–471 (1978).

    Google Scholar 

  20. Lister, C. R. B. Nature 257, 663–665 (1975).

    Article  ADS  Google Scholar 

  21. Luyendyk, B. P. & MacDonald, K. C. Bull. geol. Soc. Am. 88, 648–663 (1977).

    Article  Google Scholar 

  22. Choukroune, P., Francheteau, J. & Le Pichon, X. Bull. geol. Soc. Am. 89, 1013–1029 (1978).

    Article  Google Scholar 

  23. Atwater, T. & MacDonald, K. C. Nature 270, 715–719 (1977).

    Article  ADS  Google Scholar 

  24. Searle, R. C. Nature 274, 187–188 (1978).

    Article  ADS  Google Scholar 

  25. Collette, B. J. & Slootweg, A. P. Nature 274, 187 (1978).

    Article  ADS  Google Scholar 

  26. Purdy, G. M. & Rabinowitz, P. D. Init. Rep. DSDP Leg 45 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roest, W., Searle, R. & Collette, B. Fanning of fracture zones and a three-dimensional model of the Mid-Atlantic Ridge. Nature 308, 527–531 (1984). https://doi.org/10.1038/308527a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308527a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing