Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of a trypanosome surface antigen gene repertoire linked to non-duplicative gene activation

Abstract

African trypanosomes activate, one at a time, a large set of genes coding for different variant-specific surface antigens (VSAs). These genes have been classed into two groups. In the first group a permanently silent basic gene copy is duplicated and the expression-linked copy (ELC) transposed to an expression site located at a chromosome end1–3. The process is a gene conversion which changes a variable stretch of the preceding ELC4. Genes belonging to the second group do not give rise to an additional copy when expressed by a still unknown mechanism5,6. We report here that the gene for antigenic type AnTat 1.6 is located in a telomeric DNA region and is expressed without being duplicated. In clone AnTat 1.6 and the ensuing ones, the ELC of the preceding VSA (AnTat 1.3) is conserved, but in a inactive conformation. Moreover, the AnTat 1.6 gene is lost from the genome of the AnTat 1.6-derived variants, in which the duplication-linked mechanism of gene activation occurs: the gene appears to be replaced by the incoming ELC. These observations show that a trypanosome surface antigen repertoire may evolve by loss and gain of VSA genes, depending on the alternation of the different recombinational mechanisms involved in antigenic variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoeijmakers, J. H. J., Frasch, A. C. C., Bernards, A., Borst, P. & Cross, G. A. M. Nature 284, 78–80 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Pays, E., Van Meirvenne, N., Le Ray, D. & Steinert, M. Proc. natn. Acad. Sci. U.S.A. 78, 2673–2677 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Bernards, A. et al. Cell 27, 497–505 (1981).

    Article  CAS  Google Scholar 

  4. Pays, E. et al. Cell, 34, 371–381 (1983).

    Article  CAS  Google Scholar 

  5. Young, J. R., Donelson, J. E., Majiwa, P. A. O., Shapiro, S. Z. & Williams, R. O. Nucleic Acids Res. 10, 803–819 (1982).

    Article  CAS  Google Scholar 

  6. Majiwa, P. A. O., Young, J. R., Englund, P. T., Shapiro, S. Z. & Williams, R. O. Nature 297, 514–516 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Laurent, M. et al. Nature 302, 263–266 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Pays, E. et al. Cell 34, 357–369 (1983).

    Google Scholar 

  9. Borst, P. & Cross, G. A. M. Cell 29, 291–303 (1982).

    Article  CAS  Google Scholar 

  10. Williams, R. O., Young, J. R. & Majiwa, P. A. O. Nature 299, 417–421 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Young, J. R., Shah, J. S., Matthyssens, G. & Williams, R. O. Cell 32, 1149–1159 (1983).

    Article  CAS  Google Scholar 

  12. Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. Nature 303, 592–597 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Pays, E. et al. Nucleic Acids Res. 8, 5965–5981 (1980).

    Article  CAS  Google Scholar 

  14. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  15. Weintraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Pays, E. et al. Cell 35, 721–731 (1983).

    Article  CAS  Google Scholar 

  17. Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. Ann. Soc. belge Méd. trop. 57, 369–381 (1977).

    CAS  Google Scholar 

  18. Le Ray, D., Barry, D. & Vickerman, K. Nature 273, 300–302 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Hadjuk, S. L., Cameron, C. R., Barry, J. D. & Vickerman, K. Parasitology 83, 595–607 (1981).

    Article  Google Scholar 

  20. Van Meirvenne, N., Janssens, P. G. & Magnus, E. Ann. Soc. Belge Méd. trop. 55, 1–23 (1975).

    CAS  Google Scholar 

  21. Pays, E., Lheureux, M. & Steinert, M. Nature 292, 265–267 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, M., Pays, E., Delinte, K. et al. Evolution of a trypanosome surface antigen gene repertoire linked to non-duplicative gene activation. Nature 308, 370–373 (1984). https://doi.org/10.1038/308370a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308370a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing