Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of surface reactions in the stabilization of n-CdS-based photoelectrochemical cells

Abstract

The potential use of II–VI semiconductor–aqueous junction cells for the conversion of optical energy to electricity has previously been limited by semiconductor photodecomposition processes combined with low energy conversion efficiencies. Decomposition processes in the prototypical n-CdS photoelectrochemical cell can be efficiently suppressed by addition of an appropriate polychalcogenide redox couple to the electrolyte1–3. However, conversion efficiencies remain low (5% at 488 nm)4. Moreover, although increased optical to electrical energy conversion rates can be obtained by using a redox couple such as Fe(CN)4−/3−6 (8% conversion efficiency at 488 nm), the cell lifetime is greatly diminished5–7 (t1/21/2h). We report here that the photodecomposition of n-CdS in a Fe(CN)4−/3−6 electrolyte can be dramatically decreased and cell output parameters significantly improved by the presence of an appropriate combination of K+ and Cs+ ions. Monochromatic (488 m) conversion efficiencies in excess of 20% have been observed, with fill factors (a measure of the ideality of the cell) in the range of 65%. The enhanced stability and efficiency are associated with in situ chemical derivatization of the n-CdS surface with a layer of Kx Csy[CdIIFeII(CN)6]. (This species is an analogue of Prussian blue having a C-bound FeII/III centre and a nitrogen bound CdII centre. See, for example, ref. 8.)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ellis, A. B., Kaiser, S. W. & Wrighton, M. S. J. Am. chem. Soc. 98, 1635–1637 (1976).

    Article  CAS  Google Scholar 

  2. Hodes, G., Manassen, J. & Cahen, D. Nature 261, 403–404 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Miller, B. & Heller, A. Nature 262, 680–681 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Wrighton, M. S., Ellis, A. B. & Kaiser, S. W. Proc. int. Symp. Solar Energy (Electrochemical Society Inc., Princeton, New Jersey 1976).

  5. Vanden Berghe, R. A. L., Gomes, W. P. & Cardon, F. Z. phys. Chem. N. F. 92, 91–100 (1974).

    Article  CAS  Google Scholar 

  6. Gerischer, H. & Gobrecht, J. Ber. Bunsenges phys. Chem 80, 327–330 (1976).

    Article  CAS  Google Scholar 

  7. Gerischer, H. J. electroanalyt. Chem. 58, 263–274 (1975).

    Article  CAS  Google Scholar 

  8. Vol'khin, V. V. & Kalyuzhnyi, A. V. Zh. prikl. Khim. Leningr. 53, 1216–1219 (1980).

    CAS  Google Scholar 

  9. Hamnet, A. & Dennison, S. Nature 300, 687–688 (1982).

    Article  ADS  Google Scholar 

  10. Gronet, C. & Lewis, N. S. Nature 300, 733–735 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Bard, A. J. & Wrighton, M. S. J. electrochem. Soc. 124, 1706–1710 (1977).

    Article  CAS  Google Scholar 

  12. Gerischer, H. J. electroanalyt. Chem. 82, 133–143 (1977).

    Article  CAS  Google Scholar 

  13. Kohl, P. A. & Bard, A. J. J. Am. chem. Soc. 99, 7531–7539 (1977).

    Article  CAS  Google Scholar 

  14. Bocarsly, A. B. & Sinha, S. J. electroanalyt. Chem. 137, 157–162 (1982).

    Article  CAS  Google Scholar 

  15. Sinha, S., Humphrey, B. D. & Bocarsly, A. B. Inorg. Chem. 23, 203–212 (1984).

    Article  CAS  Google Scholar 

  16. Bocarsly, A. B., Galvin, S. A. & Sinha, S. Proc. Nickel Electrode Symp. Vol. 82, 97–117 (The Electrochemical Society, Inc., Princeton, New Jersey, 1982).

    Google Scholar 

  17. Bocarsly, A. B. & Sinha, S. J. electroanalyt. Chem. 140, 167–172 (1982).

    Article  CAS  Google Scholar 

  18. Crumbliss, A. L., Lugg, P. S., Patel, D. L. & Morosoff, N. Inorg. Chem. 22, 3541–3548 (1983).

    Article  CAS  Google Scholar 

  19. Ellis, D., Eckhoff, M. & Neff, V. D. J. phys. Chem. 85, 1225–1231 (1980).

    Article  Google Scholar 

  20. Italya, K., Ataka, T. & Toshimi, S. J. Am. chem. Soc. 104, 4767–4772 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, HD., Humphrey, B. & Bocarsly, A. Role of surface reactions in the stabilization of n-CdS-based photoelectrochemical cells. Nature 308, 339–341 (1984). https://doi.org/10.1038/308339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing