Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colloid stability of iron oxide particles from a freshwater lake

Abstract

Direct measurements of the aggregation rates of natural particles can help to explain the behaviour of material suspended in natural waters, and are a stringent test of predictions from model studies. The iron oxide which accumulates each summer in Esthwaite Water in Cumbria, UK is a natural colloid consisting of a sufficiently homogeneous population of particles to allow such direct measurements to be made. Here we show that, at initial particle concentrations (n0) characteristic of those in the lake (1010–1011 dm−3), the colloid stability of the iron oxide is governed by the opposing forces of van der Waals' attraction and electrostatic repulsion, as predicted from model experiments on synthetic haematite particles coated with aquatic humic substances. However, at higher particle concentrations and with Ca2+ concentrations greater than 0.01 mol dm−3 it is found that the aggregation rate constant depends on n0, possibly indicating the participation of bridging flocculation in the aggregation process under these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lerman, A. Geochemical Processes (Wiley, New York, 1979).

    Google Scholar 

  2. Yariv, S. & Cross, H. Geochemistry of Colloid Systems (Springer, Berlin, 1979).

    Book  Google Scholar 

  3. Stumm, W. & Morgan, J. J. Aquatic Chemistry 2nd edn (Wiley, New York, 1981).

    Google Scholar 

  4. Hunter, K. A. & Liss, P. S. Nature 282, 823–825 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Edzwald, J. K., Upchurch, J. B. & O'Melia, C. R. Envir. Sci. Technol. 8, 58–63 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Hahn, H. H. & Eppler, B. in Colloid and Interface Science Vol. 4 (ed. Kerker, M.) 125–137 (Academic, New York, 1976).

    Google Scholar 

  7. Hunt, J. R. Envir. Sci. Technol. 16, 303–309 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Tipping, E. & Higgins, D. C. Colloid Surf. 5, 85–92 (1982).

    Article  CAS  Google Scholar 

  9. Sholkovitz, E. R. Geochim. cosmochim. Acta 40, 831–845 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Mayer, L. M. Geochim. cosmochim. Acta 46, 2527–2535 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Mortimer, C. H. J. Ecol. 29, 280–329 (1941); 30, 147–201 (1942).

    Article  CAS  Google Scholar 

  12. Davison, W., Heaney, S. I., Talling, J. F. & Rigg, E. Schweitz. Z. Hydrol. 42, 196–224 (1981).

    Google Scholar 

  13. Tipping, E., Cook, D. & Woof, C. Geochim. cosmochim. Acta 45, 1411–1419 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Tipping, E. Geochim. cosmochim. Acta 45, 191–199 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Tipping, E. & Cooke, D. Geochim. cosmochim. Acta 46, 75–80 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Tipping, E. Chem. Geol. 33, 81–89 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Matijevic, E. & Scheiner, P. J. Colloid Interface Sci. 63, 509–524 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Von Smoluchowski, M. Z. phys. Chem. 92, 129–168 (1918).

    Google Scholar 

  19. O'Melia, C. R. Envir. Sci. Technol. 14, 1052–1060 (1980).

    Article  ADS  Google Scholar 

  20. Tipping, E. & Heaton, M. J. Geochim. cosmochim. Acta 47, 1393–1397 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Spielman, L. A. J. Colloid Interface Sci. 33, 562–571 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Hatton, W., McFadyen, P. & Smith, A. L. JCS Faraday 70, 655–660 (1974).

    Article  Google Scholar 

  23. Overbeek, J. T. G. in Colloid Science Vol. 1 (ed. Kruyt, H. R.) 302–341 (Elsevier, Amsterdam, 1952).

    Google Scholar 

  24. Müller, H. Kolloidchem. Beih. 26, 257–311 (1928).

    Article  Google Scholar 

  25. Gregory, J. in The Scientific Basis of Flocculation (ed. Ives, K. J.) 101–130 (Sijthoff & Noordhoff, Alphen aan den Rijn, 1978).

    Book  Google Scholar 

  26. Williams, D. J. A. & Ottewill, R. H. Kolloid-Z. Z. Polym. 243, 141–147 (1971).

    Article  CAS  Google Scholar 

  27. Lindström, T. & Söremark, C. J. Colloid Interface Sci. 55, 69–72 (1976).

    Article  ADS  Google Scholar 

  28. Van der Scheer, A., Tanke, M. A. & Smolders, C. A. Discuss. Faraday Soc. 65, 264–281 (1978).

    Article  CAS  Google Scholar 

  29. Walles, W. E. J. Colloid Interface Sci. 27, 797–803 (1968).

    Article  ADS  CAS  Google Scholar 

  30. Sommerauer, A., Sussman, D. L. & Stumm, W. Kolloid-Z. Z. Polym. 225, 147–154 (1968).

    Article  CAS  Google Scholar 

  31. Busch, P. L. & Stumm, W. Envir. Sci. Technol. 2, 49–53 (1968).

    Article  ADS  CAS  Google Scholar 

  32. Eaton, A. Est. Coast. mar. Sci. 9, 41–49 (1979).

    Article  CAS  Google Scholar 

  33. Massalaski, A. & Leppard, G. G. J. Fish. Res. Bd Can. 36, 906–921 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tipping, E., Ohnstad, M. Colloid stability of iron oxide particles from a freshwater lake. Nature 308, 266–268 (1984). https://doi.org/10.1038/308266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing