Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solar gravity modes as a test of turbulent diffusion mixing

Abstract

The Stanford group1 has recently detected solar global oscillations in the range 160–370 min and interpreted them as internal gravity modes of degree l = 1 and l = 2. Other observations2,3 also indicate the existence of low-degree solar gravity modes. Whereas the high-degree 5-min oscillations are sensitive to the properties of the convective zone essentially, the low-frequency modes (gravity modes) are sensitive to the physical conditions in the solar core. Other constraints on the solar core are given by the observed value of the neutrino flux, which is lower than the flux predicted by the standard models, and by the splitting of the low-degree 5-min oscillations. As far as the neutrino flux is concerned, a possibility to reduce it has been explored by Schatzman and Maeder4 by introducing a turbulent diffusion mixing. In this paper we study the influence of such mixing on the periods of low-degree l gravity modes, which do not present the difficulties of the high-degree gravity modes5. We find that these periods depend strongly on the pseudo-Reynolds number4, and we derive the range of this parameter compatible with the recent observational results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Delache, P. & Scherrer, P. Nature 306, 651–654 (1983).

    Article  ADS  Google Scholar 

  2. Van der Raay, H. B. Oscillations as a Probe of the Sun's Interior (European Study Conference, Catania, 1983).

    Google Scholar 

  3. Froelich, C. & Delache, P. Oscillations as a Probe of the Sun's Interior (European Study Conference, Catania, 1983).

    Google Scholar 

  4. Schatzman, E. & Maeder, A. Astr. Astrophys. 96, 1–16 (1981); Nature 290, 683–686 (1981).

    ADS  CAS  Google Scholar 

  5. Gough, D. O. Pleins Feux sur la Physique Solaire (ed. Rösch, J.) (CNRS, 1978).

    Google Scholar 

  6. Tassoul, M. & Tassoul, J. L. Ann. Astrophys. 31, 251–256 (1968).

    ADS  Google Scholar 

  7. Tassoul, M. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).

    Article  ADS  Google Scholar 

  8. Iben, I. & Mahaffy, J. Astrophys. J. 209, L39–L43 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Christensen-Dalsgaard, J., Gough, D. O. & Morgan, J. G. Astr. Astrophys. 73, 121–128 (1979).

    ADS  Google Scholar 

  10. Christensen-Dalsgaard, J. & Gough, D. O. Nature 288, 544–547 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Ulrich, R. K. & Rhodes, E. J. Astrophys. J. 265, 551–563 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Gough, D. O. Nature 302, 18 (1983).

    Article  ADS  Google Scholar 

  13. Zahn, J. P. Astrophysical Processes in Upper Main Sequence Stars (eds Cox, A. N., Vanclair, S. & Zahn, J. P.) 253–329 (13th Advanced Course Swiss Society of Astronomy and Astrophysics, SAAS-FEE, 1983).

    Google Scholar 

  14. Ulrich, R. K. & Rhodes, E. J. Astrophys. J. 218, 521–529 (1977).

    Article  ADS  Google Scholar 

  15. Berthomieu, G. et al. Lect. Not. Phys. 125, 307–312 (1980).

    Article  ADS  Google Scholar 

  16. Lubow, S. H., Rhodes, E. J. & Ulrich, R. K. Lect. Not. Phys. 125, 300–306 (1980).

    Article  ADS  Google Scholar 

  17. Geiss, J. & Reeves, H. Astr. Astrophys. 18, 126–132 (1972).

    ADS  CAS  Google Scholar 

  18. Peimbert, M. Proc. Workshop on Primordial Helium and Related Light Elements, Garching (European Space Observatory, 1983).

  19. Bahcall, J. N., Huebner, W. F., Lubow, S. H., Parker, P. D. & Ulrich, R. K. Rev. mod. Phys. 54, 767–799 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Christensen-Dalsgaard, J. Mon. Not. R. astr. Soc. 199, 735–761 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Davis, R. Jr Proc. Brookhaven Solar Neutrino Conf. Vol. 1 (BNL 50879, 1978).

  22. Froehlich, C. & Delache, Ph. Proc. Solar Seismology from Space, Snowmass 1983 (Jet Propulsion Laboratory, Pasadena, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthomieu, G., Provost, J. & Schatzman, E. Solar gravity modes as a test of turbulent diffusion mixing. Nature 308, 254–257 (1984). https://doi.org/10.1038/308254a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308254a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing