Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

β-Adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres

Abstract

Hormonal modulation of the ionic conductance of cell membranes is a topic of considerable current interest1–3; it has a major role, for example, in the improved performance of the vertebrate heart elicited by sympathetic nerve stimulation or by circulating catecholamines, an effect involving enhanced calcium influx3–6. β-Agonist catecholamines also abbreviate the action potential of cardiac Purkinje fibres7–11, and increase the resting potential in a variety of cells12–14, including cardiac cells7,10,15–17, a hyperpolarization usually attributed to stimulation of the electrogenic Na+/K+ pump. We show here that nanomolar concentrations of β-catecholamines cause hyperpolarization of cardiac Purkinje fibres, not by increasing Na+/K+ pump current, but by increasing resting membrane K+ conductance. The hyperpolarization and shortening of the action potential should increase availability of Na+ channels and reduce the refractory period, effects tending to safeguard impulse propagation through the ventricular conducting system despite the increased heart rate caused by β-catecholamine action on the sinus node pacemaker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Madison, D. V. & Nicoll, R. A. Nature 299, 636–638 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 297, 501–504 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Niedergerke, R. & Page, S. Proc. R. Soc. B197, 333–362 (1977).

    ADS  CAS  Google Scholar 

  5. Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

    Article  CAS  Google Scholar 

  6. Osterrieder, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Dudel, J. & Trautwein, W. Experientia 12, 396–398 (1956).

    Article  CAS  Google Scholar 

  8. Tsien, R. W., Giles, W. & Greengard, P. Nature 240, 181–183 (1972).

    CAS  Google Scholar 

  9. Giotti, A., Ledda, F. & Mannaioni, P. F. J. Physiol., Lond. 229, 99–113 (1973).

    Article  CAS  Google Scholar 

  10. Trautwein, W. & Schmidt, R. F. Pflügers Arch. ges. Physiol. 271, 715–726 (1960).

    Article  CAS  Google Scholar 

  11. Kass, R. S. & Wiegers, S. E. J. Physiol., Lond. 322, 541–558 (1982).

    Article  CAS  Google Scholar 

  12. Clausen, T. & Flatman, J. A. J. Physiol., Lond. 270, 383–414 (1977).

    Article  CAS  Google Scholar 

  13. Somlyo, A. P. & Somlyo, A. V. Fedn Proc. 28, 1634–1642 (1969).

    CAS  Google Scholar 

  14. Bulbring, E., Ohashi, H. & Tomita, T. in Smooth Muscle: An Assessment of Current Knowledge (eds Bulbring, E., Jones, A. W. & Tomita, T.) 219–248 (University of Texas Press, Austin, 1981).

    Google Scholar 

  15. Akasu, T., Ohta, Y. & Koketsu, K. J. Heart J. 18, 860–866 (1977).

    Article  CAS  Google Scholar 

  16. Vassalle, M. & Barnabei, P. Pflügers Arch. ges. Physiol. 322, 287–303 (1971).

    Article  CAS  Google Scholar 

  17. Wasserstrom, J. A., Schwartz, D. J. & Fozzard, H. A. Am. J. Physiol. 243, H670–H675 (1982).

    Google Scholar 

  18. Hodgkin, A. L. & Horowicz, P. J. Physiol., Lond. 148, 127–160 (1959).

    Article  CAS  Google Scholar 

  19. Gadsby, D. C. & Cranefield, P. F. J. gen. Physiol. 70, 725–746 (1977).

    Article  CAS  Google Scholar 

  20. Marsh, J. D., Barry, W. H., Neer, E. J., Alexander, R. W. & Smith, T. W. Circulation Res. 47, 493–501 (1980).

    Article  CAS  Google Scholar 

  21. Glitsch, H. G. A. Rev. Physiol. 44, 389–400 (1982).

    Article  CAS  Google Scholar 

  22. Gadsby, D. C. & Cranefield, P. F. Proc. natn. Acad. Sci. U.S.A. 76, 1783–1787 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Noble, D. J. cell. comp. Physiol. 66, 127–135 (1965).

    Article  Google Scholar 

  24. Boyden, P. A., Cranefield, P. F. & Gadsby, D. C. J. Physiol., Lond. 339, 185–206 (1983).

    Article  CAS  Google Scholar 

  25. Lee, C. O. & Vassalle, M. Am. J. Physiol. 244, C110–C114 (1983).

    Article  Google Scholar 

  26. Furchgott, R. F. Pharmac. Rev. 7, 183–265 (1955).

    CAS  Google Scholar 

  27. Cranefield, P. F. & Gadsby, D. C. J. Physiol., Lond. 318, 34P–35P (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadsby, D. β-Adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres. Nature 306, 691–693 (1983). https://doi.org/10.1038/306691a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306691a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing