Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The end may be hastened by magnetic monopoles

Abstract

In an open Universe, or even in just a long-lived Universe (as predicted in inflationary Universe models1–3), the ultimate demise of matter is a certainty. Stars, of course, have only a fleeting existence as they must eventually exhaust their nuclear fuels (in 1010 yr for a 1 M star). In 1014 yr or so new star formation will have ceased, and only neutron stars, white dwarfs, planetary-sized objects (such as Jupiter and Earth) and black holes will remain4. In the simplest grand unified theories (GUTs) the proton lifetime is but 0(1030 yr), so that after this time neutron stars, white dwarfs, and planets will cease to exist. (Due to gravitational effects alone the proton lifetime is expected to be 0(1046 yr) or less.) Although they could outlive the other three, black holes will also eventually disappear, evaporating through the Hawking process5 in a time 1064(M/M)3 yr. I point out here that the existence of just a tiny flux of superheavy magnetic monopoles, say FF−21 × 10−21 cm−2 sr−1 s−1, will, due to monopole-catalysed nucleon decay6,7, hasten the demise of matter. Due to the monopoles that collect inside them, the lifetime of a neutron star will be 1011F−½−21 yr, of a white dwarf 1014F−½−21 yr, and of an Earth-like planet 1018F−½−21 yr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guth, A. Phys. Rev. D23, 347 (1981).

    ADS  CAS  Google Scholar 

  2. Linde, A. Phys. Lett. 108B, 389 (1982).

    Article  Google Scholar 

  3. Albrecht, A. & Steinhardt, P. Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  4. Dyson, F. Rev. mod. Phys. 51, 447 (1979).

    Article  ADS  Google Scholar 

  5. Hawking, S. W. Nature 248, 30 (1974).

    Article  ADS  Google Scholar 

  6. Callan, C. G. Phys. Rev. D25, 2141 (1982); D26, 2058 (1982).

    ADS  CAS  Google Scholar 

  7. Rubakov, V. A. Pis'ma Zh. eksp. tear. Fiz. 33, 658 (1981) [J. exp. theor. Phys. Lett. 33, 644 (1981)]. Nucl. Phys. B203, 311 (1982).

    CAS  Google Scholar 

  8. 't Hooft, G. Nucl Phys. B79, 276 (1974).

    Article  ADS  Google Scholar 

  9. Polyakov, A. M. Pis'ma Zh. eksp. teor. Fiz. 20, 430 (1974) [J. exp. theor. Phys. Lett. 20, 194 (1974)].

    Google Scholar 

  10. Dirac, P. A. M. Proc. phys. Soc. Land. A133, 60 (1931).

    Article  ADS  Google Scholar 

  11. Wilczek, F. Phys. Rev. Lett. 48, 1146 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Preskill, J. Phys. Rev. Lett. 43, 1365 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Zel'dovich, Ya. B. & Khlopov, M. Yu. Phys. Lett. 79B, 239 (1978).

    Article  Google Scholar 

  14. Turner, M. S. Phys. Lett. 115B, 95 (1982).

    Article  Google Scholar 

  15. Cabrera, B. Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Parker, E. N. Astrophys. J. 160, 383 (1970).

    Article  ADS  Google Scholar 

  17. Turner, M. S., Parker, E. N. & Bogdan, T. Phys. Rev. D26, 1296 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Ellis, J., Nanopoulos, D. V. & Olive, K. A. Phys. Lett. 116B, 127 (1982).

    Article  Google Scholar 

  19. Ahlen, S. P. in Magnetic Monopoles (eds Carrigan, R. A. & Trower, W. P.) (Plenum, New York, 1983).

    Google Scholar 

  20. Turner, M. S. Nature 302, 804 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Kolb, E. W., Colgate, S. A. & Harvey, J. Phys. Rev. Lett. 49, 1373 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Dimopoulos, S., Preskill, J. & Wilczek, F. Phys. Lett. 119B, 320 (1982).

    Article  Google Scholar 

  23. Bais, F. A., Ellis, J., Nanopoulos, D. V. & Olive, K. A. Nucl. Phys. B 219, 189–219 (1983).

    Article  ADS  Google Scholar 

  24. Freese, K. T., Turner, M. S. & Schramm, D. N. Monopole Catalysis of Nucleon Decay in Old Pulsars, Preprint (University of Chicago, 1983).

    Book  Google Scholar 

  25. Page, D. N. Phys. Lett. 91 A, 201 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M. The end may be hastened by magnetic monopoles. Nature 306, 161–162 (1983). https://doi.org/10.1038/306161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing