Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is hypomethylation linked to activation of δ-crystallin genes during lens development?

Abstract

Expression of many cell type-specific genes is correlated with a reduced level of cytosine methylation1,2 and some results argue that genetic programmes may be activated by a reduction in DNA methylation3. During embryogenesis, however, when many genes are activated in specific cell lineages, it has not been demonstrated that they are hypomethylated prior to their expression. We have examined the timing of hypomethylation and gene activation during embryonic chick lens development for the two genes encoding δ-crystallin (the major lens-specific protein). We report here that while many of the CCGG sequences analysed become hypomethylated, most do not do so until 2 days after δ-crystallin is first synthesized. However, there is at least one site which is hypomethylated earlier, approximately when transcription is thought to commence. We conclude that hypomethylation in the δ-crystallin genes is probably not a simple process which activates transcription, although early hypomethylation events indicate obvious sites to be examined for a role in gene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Razin, A. & Riggs, A. D. Science 210, 604–610 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Doerfler, W. J. gen. Virol. 57, 1–20 (1981).

    Article  CAS  Google Scholar 

  3. Taylor, S. M. & Jones, P. A. Cell 17, 771–779 (1979).

    Article  CAS  Google Scholar 

  4. Waalwijk, C. & Flavell, R. A. Nucleic Acids Res. 5, 4631–4641 (1978).

    Article  CAS  Google Scholar 

  5. Jones, R. E., DeFeo, D. & Piatigorsky, J. J. biol. Chem. 256, 8172–8176 (1981).

    CAS  PubMed  Google Scholar 

  6. Zwaan, J. & Ikeda, A. Expl Eye Res. 7, 301–311 (1968).

    Article  CAS  Google Scholar 

  7. Shinohara, T. & Piatigorsky, J. Proc. natn. Acad. Sci. U.S.A. 73, 2808–2812 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Karkinen-Jääskeläinen, M. J. Embryol. exp. Morph. 44, 167–179 (1978).

    PubMed  Google Scholar 

  9. Zwaan, J. Wilhelm Roux's Arch. dev. Biol. 175, 13–25 (1974).

    Article  Google Scholar 

  10. Bird, A. P. J. molec. Biol. 118, 49–60 (1978).

    Article  CAS  Google Scholar 

  11. McKeon, C., Ohkubo, H., Pastan, I. & de Crombrugghe, B. Cell 29, 203–210 (1982).

    Article  CAS  Google Scholar 

  12. Wilks, A. F., Cozens, P. J., Mattaj, I. W. & Jost, J.-P. Proc. natn. Acad. Sci. U.S.A. 79, 4252–4255 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Ott, M.-O. et al. Cell 30, 825–833 (1982).

    Article  CAS  Google Scholar 

  14. Groudine, M. & Weintraub, H. Cell 24, 393–401 (1981).

    Article  CAS  Google Scholar 

  15. Zwaan, J. & Pearce, T. L. Devl Biol. 25, 96–118 (1971).

    Article  CAS  Google Scholar 

  16. Bower, D. J., Errington, L. H., Cooper, D. N., Morris, S. & Clayton, R. M. Nucleic Acids Res. 11, 2513–2527 (1983).

    Article  CAS  Google Scholar 

  17. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  18. Maniatis, T. et al. Cell 15, 687–701 (1978).

    Article  CAS  Google Scholar 

  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  20. O'Rahilly, R. & Meyer, D. B. Acta anat. 36, 20–58 (1959).

    Article  CAS  Google Scholar 

  21. Hamburger, V. & Hamilton, H. L. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  22. Weintraub, H., Palter, K. & Van Lente, F. Cell 6, 85–110 (1975).

    Article  CAS  Google Scholar 

  23. Oakley, B. R., Kirsch, D. P. & Morris, N. R. Analyt. Biochem. 105, 361–363 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grainger, R., Hazard-Leonards, R., Samaha, F. et al. Is hypomethylation linked to activation of δ-crystallin genes during lens development?. Nature 306, 88–91 (1983). https://doi.org/10.1038/306088a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306088a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing