Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is extracellular calcium buffering involved in regulation of transmitter release at the neuromuscular junction?

Abstract

During synaptic activity at the neuromuscular junction, sodium, potassium and calcium ions flow through both the postsynaptic and presynaptic membrane1–4. These ionic fluxes can cause changes in the local extracellular concentration in the synaptic gap: a decrease in the concentration of the inwardly flowing ions (sodium and calcium) and an increase in the outwardly flowing potassium ions5. To check whether depletion of calcium ions in the synaptic gap is involved in transmitter release, we have used calcium buffers to keep the extracellular calcium concentration almost constant. The expectation was that if depletion does occur, transmitter release will increase; if no depletion occurs, there will be no change in quantal release when the calcium concentration is the same in buffered and unbuffered bathing solutions. We report here that, surprisingly, perfusing the frog neuromuscular preparation with a calcium-buffered solution caused a decrease in transmitter release compared with that in an unbuffered solution with the same calcium concentration6. This presumably indicates that the calcium level in the synaptic cleft is higher than that in the bulk extracellular medium. If such a mechanism operates physiologically, it may provide an energetically economical way to determine the level of evoked transmitter release and thus synaptic efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fatt, P. & Katz, B. J. Physiol., Lond. 115, 320–370 (1951).

    Article  CAS  Google Scholar 

  2. Takeuchi, A. & Takeuchi, N. J. Physiol., Lond. 154, 52–67 (1960).

    Article  CAS  Google Scholar 

  3. Takeuchi, N. J. Physiol., Lond. 167, 141–155 (1963).

    Article  CAS  Google Scholar 

  4. Katz, B. & Miledi, R. Proc. R. Soc. B161, 453–482 (1965).

    ADS  CAS  Google Scholar 

  5. Attwell, D. & Iles, J. F. Proc. R. Soc. B206, 115–131 (1979).

    ADS  CAS  Google Scholar 

  6. Ginsburg, A. & Rahamimoff, R. J. Physiol., Lond. 336, 53p (1983).

    Google Scholar 

  7. Scarpa, A. Meth. Enzym. 24, 343–351 (1972).

    Article  CAS  Google Scholar 

  8. Ross, J. W. Science 156, 1378–1379 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Dani, J. A., Sanchez, J. A. & Hille, B. J. gen. Physiol. 81, 255–281 (1983).

    Article  CAS  Google Scholar 

  10. Field, T. B., Coburn, J., McCourt, J. L. & McBryde, W. A. E. Analytica chim. Acta 74, 101–106 (1975).

    Article  CAS  Google Scholar 

  11. Sillen, L. G. & Martell, A. E. Chem. Soc. Spec. Publ. 17, pages? (1964).

  12. Dodge, F. A. & Rahamimoff, R. J. Physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  13. del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  14. McMahan, U. J., Edgington, D. R. & Kuffler, D. P. J. exp. Biol. 89, 31–42 (1980).

    CAS  PubMed  Google Scholar 

  15. del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 553–559 (1954).

    Article  CAS  Google Scholar 

  16. Jenkinson, D. H. J. Physiol., Lond. 138, 434–444 (1957).

    Article  CAS  Google Scholar 

  17. Le Chatelier, H. L. C.r. hebd. Seanc. Acad. Sci., Paris 100, 441 (1885).

    Google Scholar 

  18. Rahamimoff, R., Meiri, H., Erulkar, S. D. & Barenholz, Y. Proc. natn. Acad. Sci. U.S.A. 75, 5214–5216 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsburg, S., Rahamimoff, R. Is extracellular calcium buffering involved in regulation of transmitter release at the neuromuscular junction?. Nature 306, 62–64 (1983). https://doi.org/10.1038/306062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306062a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing