Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correction of cell–cell communication defect by introduction of a protein kinase into mutant cells

Abstract

The cell-to-cell permeability of the junctions of various cultured mammalian cell types depends on the concentration of intracellular cyclic AMP ([cAMP]i). The permeability rises when the cells are supplied with exogenous cyclic AMP or when their cyclic AMP synthesis is stimulated with choleragen or hormones; it falls when [cAMP]i is lowered by application of serum or due to increase in cell density1–5. The rise and fall in permeability take several hours to develop (the rise is protein synthesis-dependent) and they occur concurrently with the rise and fall in the number of intramembrane particles of the gap junctions2–4, which probably embody the cell-to-cell channels. Is this permeability regulation mediated by phosphorylating protein kinase? In many eukaryotes, the cyclic AMP receptor is a protein kinase6–8 consisting of a pair of regulatory subunits and a pair of catalytic subunits. The latter dissociate from the holoenzyme as the cyclic AMP binds to the regulatory subunits and, in this dissociated form, catalyse the phosphorylation of the target9. The regulatory subunit occurs in two isoenzyme forms, I and II. The catalytic subunit seems invariant9; subunits from different isoenzymes can substitute for each other10,11. We show here that a mutant cell lacking the isoenzyme I is deficient in permeable junctions, and that this junctional defect is corrected when the mutant is supplied with exogenous catalytic subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flagg-Newton, J. L. & Loewenstein, W. R. J. Membrane Biol. 63, 123–131 (1981).

    Article  CAS  Google Scholar 

  2. Flagg-Newton, J. L., Dahl, G. & Loewenstein, W. R. J. Membrane Biol. 63, 105–121 (1981).

    Article  CAS  Google Scholar 

  3. Azarnia, R., Dahl, G. & Loewenstein, W. R. J. Membrane Biol. 63, 133–146 (1981).

    Article  CAS  Google Scholar 

  4. Radu, A., Dahl, G. & Loewenstein, W. R. J. Membrane Biol. 70, 239–251 (1982).

    Article  CAS  Google Scholar 

  5. Loewenstein, W. R. Physiol. Rev. 61, 829–913 (1981).

    Article  CAS  Google Scholar 

  6. Kuo, J. F. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 64, 1349–1355 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Krebs, E. G. Curr. Topics cell. Regulation 5, 99–133 (1972).

    Article  CAS  Google Scholar 

  8. Nimmo, H. G. & Cohen, P. Adv. Cyclic Nucleotide Res. 8, 145–266 (1977).

    CAS  Google Scholar 

  9. Rosen, O. M. & Krebs, E. G. (eds) Cold Spring Harb. Conf. Cell Proliferation Vol. 8A,B (Cold Spring Harbor Laboratory, New York, 1981).

  10. Yamamura, H., Kumon, A. & Nishizuka, Y. J. biol. Chem. 246, 1544–1547 (1971).

    CAS  PubMed  Google Scholar 

  11. Miyamoto, E., Petzold, G. L., Kuo, J. F. & Greengard, P. J. biol. Chem. 248, 179–189 (1973).

    CAS  PubMed  Google Scholar 

  12. Gottesman, M. M. et al. in Cold Spring Harb. Conf. Cell Proliferation Vol. 8A (eds Rosen, O. M. & Krebs, E. G.) 195–209 (Cold Spring Harbor Laboratory, New York, 1981).

    Google Scholar 

  13. Kerrick, W. G. L. & Krasner, B. J. appl. Physiol. 39, 1052–1055 (1975).

    Article  CAS  Google Scholar 

  14. Beavo, J. A., Bechtel, P. J. & Krebs, E. G. Meth. Enzym. 38, 299 (1974).

    Article  CAS  Google Scholar 

  15. Bourguignon, L. & Kerrick, W. G. L. J. Membrane Biol. (in the press).

  16. Kerrick, W. G. L. & Hoar, P. Nature 292, 253–255 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Johnson, K. R., Johnson, R. Fedn Proc. 41, 755 (1982).

    Google Scholar 

  18. Evain, D., Gottesman, M. M., Pastan, I. & Anderson, W. B. J. biol. Chem. 254, 6931–6937 (1979).

    CAS  PubMed  Google Scholar 

  19. Corbin, J. D. & Reimann, E. M. Meth. Enzy. 38, 287–290 (1974).

    Article  CAS  Google Scholar 

  20. Simpson, I., Rose, B. & Loewenstein, W. R. Science 195, 294–296 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Schwarzmann, G. et al. Science 213, 551–553 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiener, E., Loewenstein, W. Correction of cell–cell communication defect by introduction of a protein kinase into mutant cells. Nature 305, 433–435 (1983). https://doi.org/10.1038/305433a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305433a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing