Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laboratory measurements of D/H ratios in interplanetary dust

Abstract

Measurements of noble gas elemental and isotopic abundance patterns have provided evidence that a subset of the particles collected in the upper atmosphere by NASA aircraft are micrometeorites. This ‘chondritic’ subset is characterized by major and trace element contents within a factor of 2 of cosmic abundances1. We have found that the deuterium in two such particles is enriched relative to hydrogen by 500–1,100‰ when compared with the terrestrial SMOW standard. This result confirms the extraterrestrial origin of the ‘chondritic’ dust particles and demonstrates that the material preserves an interesting, and potentially unique, isotopic record which may reflect a memory of processes occurring during (or before) the formation of the Solar System. In addition, the deuterium enrichment seen in the interplanetary dust particles is analogous to that observed in bulk samples of one carbonaceous meteorite and two unequilibrated ordinary chondrites as well as in chemical separates of a number of other meteorites. In this sense interplanetary dust is also ‘primitive’ material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fraundorf, P., Brownlee, D. E. & Walker, R. M. in Comets (ed. Wilkening, L.) 383–409 (University of Arizona Press, 1982).

    Google Scholar 

  2. Hoefs, J. in Stable Isotope Geochemistry (Springer, Berlin, 1980).

    Book  Google Scholar 

  3. Boato, G. Geochim. cosmochim. Acta 6, 209 (1954).

    Article  ADS  Google Scholar 

  4. Kolodny, Y., Kerridge, J. F. & Kaplan, I. R. Earth planet. Sci. Lett. 46, 149–158 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Robert, F. & Epstein, S. Geochim. cosmochim. Acta 46, 81–95 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Becker, R. H. & Epstein, S. Geochim. cosmochim. Acta 46, 97–103 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Yang, J. & Epstein, S. Lunar planet. Sci. 14, 873–874 (1983).

    ADS  Google Scholar 

  8. McNaughton, N. J., Fallick, A. E. & Pillinger, C. T. J. geophys. Res. Suppl. 87, A297–A302 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Robert, F., Merlivat, L. & Javoy, M. Nature 282, 785–789 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Hinton, R. W., Long, J. V. P., Fallick, A. E. & Pillinger, C. T. Lunar planet. Sci. 14, 313–314 (1983).

    ADS  Google Scholar 

  11. Clanton, U. S. et al. Lunar planet. Sci. 13, 109–110 (1982).

    ADS  Google Scholar 

  12. Flynn, G. J., Fraundorf, P., Shirck, J. & Walker, R. M. Proc. 9th lunar planet. Sci. Conf. 1187–1208 (1978).

  13. Fraundorf, P., McKeegan, K. D., Sandford, S. A., Swan, P. & Walker, R. M. J. geophys. Res. Suppl. 87, A403–A408 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Fraundorf, P. & Shirck, J. Proc. 10th lunar planet. Sci. Conf. 951–976 (1979).

  15. Fraundorf, P. Geochim. cosmoshim. Acta 45, 915–943 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Bradley, J. P., Brownlee, D. E. & Veblen, D. R. Nature 301, 473–477 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Fraundorf, P., Hintz, C., Lowry, O., McKeegan, K. & Sandford, S. Lunar planet. Sci. 13, 225–226 (1982).

    ADS  Google Scholar 

  18. Rajan, R. S. et al. Nature 267, 133–134 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Hudson, B., Flynn, G. J., Fraundorf, P., Hohenberg, C. M. & Shirck, J. Science 211, 383–386 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Fraundorf, P., Patel, R. I., Sandford, S. A. & Walker, R. M. Lunar planet. Sci. 14, 207–208 (1983).

    ADS  Google Scholar 

  21. Blanchard, M. B., Brownlee, D. E., Bunch, T. E., Hodge, P. W. & Kyte, F. T. NASA TM-78510 (National Technical Information Service, Springfield, 1978).

    Google Scholar 

  22. Fraundorf, P., Patel, R. I. & Freeman, J. J. Icarus 47, 368–380 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Strategy for the Exploration of Primitive Solar System Bodies—Asteroids, Comets and Meteoroids (1980–1990) (National Academy of Sciences, Washington DC, 1980).

  24. Geiss, J. & Reeves, H. Astr. Astrophys. 93, 189–199 (1981).

    ADS  CAS  Google Scholar 

  25. Clayton, D. D. Q. Jl R. astr. Soc. 23, 174–212 (1982).

    ADS  CAS  Google Scholar 

  26. Esat, T. M., Brownlee, D. E., Papanastassiou, D. A. & Wasserburg, G. J. Science 206, 190–197 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinner, E., McKeegan, K. & Walker, R. Laboratory measurements of D/H ratios in interplanetary dust. Nature 305, 119–121 (1983). https://doi.org/10.1038/305119a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305119a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing