Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of intracellular Ca2+ transients in sympathetic neurones using arsenazo III

Abstract

Changes in cytosolic calcium ion concentration ([Ca2+]i) have been implicated in a wide variety of cellular stimulus–transduction roles1–3. In nerve cells, it is believed that electrical activity raises [Ca2+]i, by allowing influx of Ca2+ through voltage-dependent channels in the surface membrane4,5. Elevation of neuronal [Ca2+]i may also occur due to release of Ca2+ from intracellular storage sites6–8. Transient increases in [Ca2+]i are thought to trigger neurotransmitter release9, and to modulate axonal transport10, energy metabolism11 and growth cone movement12. Intracellular Ca2+ also appears to regulate membrane potassium channels and thereby to regulate electrical excitability13. Although [Ca2+]i transients have been measured in a few giant invertebrate neurones14, detection of such transients in a vertebrate neurone has not been previously reported. We have measured [Ca2+]i in bullfrog sympathetic neurones by photometry of a microinjected calcium indicator dye, arsenazo III (refs 14–16), and report here that action potentials and voltage-clamped depolarizations cause long-lasting increases in [Ca2+]i. Also, exposure to the drug theophylline can cause spontaneous periodic increases in [Ca2+]i. Comparisons of [Ca2+]i signals with simultaneous intracellular recordings of membrane potential suggest that the kinetics of the post-tetanic hyperpolarization (PTH) following a series of action potentials or the spontaneous hyperpolarizations induced by theophylline directly reflect the kinetics of the [Ca2+]i, transient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheung, W. Y. Science 207, 19–27 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Watterson, D. M. & Vincenzi, F. F. Ann. N.Y. Acad. Sci. 356 (1980).

  3. Kretsinger, R. H. Neurosci. Res. Prog. Bull. 19, 215–328 (1981).

    Google Scholar 

  4. Baker, P. F. Prog. Biophys. molec. Biol. 24, 177–223 (1972).

    Article  CAS  Google Scholar 

  5. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  6. Henkart, M. Fedn Proc. 39, 2783–2789 (1980).

    CAS  Google Scholar 

  7. McCort, S. M. & Weight, F. F. Soc. Neurosci. Abstr. 5, 47 (1979).

    Google Scholar 

  8. Kuba, K. J. Physiol., Lond. 298, 251–269 (1980).

    Article  CAS  Google Scholar 

  9. Katz, B. The Release of Neural Transmitter Substance (Liverpool University Press, 1960).

  10. Ochs, S. Neurosci. Res. Prog. Bull. 20, 19–31 (1981).

    CAS  Google Scholar 

  11. Landowne, D. & Ritchie, J. M. J. Physiol., Lond. 212, 503–517 (1971).

    Article  CAS  Google Scholar 

  12. Anglister, L., Sharar, A., Farber, I. C. & Grinwald, A. Soc. Neurosci. Abstr. 7, 548 (1981).

    Google Scholar 

  13. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Blinks, J. R., Wier, W. G., Hess, P. & Prendergast, F. G. Prog. Biophys. molec. Biol. 40, 1–114 (1982).

    Article  CAS  Google Scholar 

  15. Budesinsky, B. in Chelates in Analytical Chemistry Vol. 2 (eds Flaschka, H. A. & Banard, A. J.) 1–19 (Dekker, New York, 1969).

    Google Scholar 

  16. Brown, J. E. et al. Biophys. J. 15, 1155–1160 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Minota, S. Jap. J. Physiol. 24, 501–512 (1974).

    Article  CAS  Google Scholar 

  18. Busis, N. A. & Weight, F. F. Nature 263, 434–436 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Adams, P. R. Adv. physiol. Sci. 4, 135–138 (1981).

    CAS  Google Scholar 

  20. Kuba, K. & Nishi, S. J. Neurophysiol. 39, 547–563 (1976).

    Article  CAS  Google Scholar 

  21. Crank, J. The Mathematics of Diffusion. (Clarendon, Oxford, 1975).

    MATH  Google Scholar 

  22. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 308, 259–285 (1980).

    Article  CAS  Google Scholar 

  23. Brinley, F. J. Jr A. Rev. Biophys. Bioengng 7, 363–392 (1978).

    Article  CAS  Google Scholar 

  24. Gorman, A. L. F. & Thomas, M. V. Physiol., Lond. 275, 357–376 (1978).

    Article  CAS  Google Scholar 

  25. Rios, E. & Schneider, M. F. Biophys. J. 36, 607–622 (1981).

    Article  CAS  Google Scholar 

  26. Ahmed, Z. & Connor, J. A. J. Physiol., Lond. 286, 61–82 (1979).

    Article  CAS  Google Scholar 

  27. Beeler, T. J., Schibeci, A. & Martonosi, A. Biochim. biphys. Acta. 629, 317–327 (1980).

    Article  CAS  Google Scholar 

  28. Levy, S., Tillotson, D. & Gorman, A. L. F. Biophys. J. 37, 182a (1982).

    Google Scholar 

  29. Smith, S. J. & Zucker, R. S. J. Physiol., Lond. 300, 167–196 (1980).

    Article  CAS  Google Scholar 

  30. MacDermott, A. B., Connor, E. A., Dionne, V. E. & Parsons, R. L. J. gen. Physiol. 75, 39–60 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., MacDermott, A. & Weight, F. Detection of intracellular Ca2+ transients in sympathetic neurones using arsenazo III. Nature 304, 350–352 (1983). https://doi.org/10.1038/304350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing