Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loosening of paranodal myelin by repetitive propagation of action potentials

Abstract

We have previously shown by X-ray diffraction techniques that the stability of the myelin lattice is decreased by repetitive stimulation of the nerve1. We now show that in rat myelinated fibres this structural change is accompanied by the appearance of voltage-sensitive potassium channels which do not normally participate in the generation of the action potential. Since it has previously been shown that structures associated with potassium channels are found in the internodal and paranodal axolemma membrane but are normally concealed under the myelin sheath2,3, we suggest that the acceleration of myelin swelling after repetitive propagation of the action potential may be due to the opening of paranodal axoglial junctions. To our knowledge this is the first demonstration that nerve activity may regulate the structural properties of the paranode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Padrón, R. & Mateu, L. Biophys. J. 39, 183–188 (1982).

    Article  ADS  Google Scholar 

  2. Chiu, S. Y. & Ritchie, J. M. Nature 284, 170–171 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Chiu, S. Y. & Ritchie, J. M. J. Physiol., Lond. 313, 415–437 (1981).

    Article  CAS  Google Scholar 

  4. Padrón, R. & Mateu, L. J. Neurosci. Res. 5, 611–620 (1980).

    Article  Google Scholar 

  5. Padrón, R., Mateu, L. & Kirschner, D. A. Biophys. J. 28, 231–239 (1979).

    Article  Google Scholar 

  6. Mateu, L. & Kirchhausen, T. Acta cient. venez. 30, 478–483 (1979).

    CAS  PubMed  Google Scholar 

  7. Padrón, R. & Mateu, L. J. Neurosci. Res. 6, 251–260 (1981).

    Article  Google Scholar 

  8. Sherrat, R. M., Bostock, H. & Sears, T. A. Nature 283, 510–572 (1982).

    Google Scholar 

  9. Ritchie, J. M. J. Physiol., Lond. 317, 25P (1981).

    Google Scholar 

  10. Ritchie, J. M., Rang, H. P. & Pellegrino, R. Nature 294, 257–259 (1982).

    Article  ADS  Google Scholar 

  11. Bostock, H., Sears, T. A. & Sherratt, R. M. J. Physiol., Lond. 313, 301–315 (1981).

    Article  CAS  Google Scholar 

  12. Horockova, M., Nonner, W. & Stampfli, R. Proc. int. Un. physiol. Sci. 7, 198 (1968).

    Google Scholar 

  13. Bostock, H., Sherrat, R. M. & Sears, T. A. Nature 274, 385–387 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Brismar, T. J. Physiol., Lond. 298, 171–184 (1979).

    Article  Google Scholar 

  15. Chiu, S. Y., Ritchie, J. M., Rogart, R. & Stagg, D. J. Physiol., Lond. 292, 149–166 (1979).

    Article  CAS  Google Scholar 

  16. Blank, W. F. Jr, Bartlett-Bunge, M. & Bunge, R. P. Brain Res. 67, 503–518 (1974).

    Article  CAS  Google Scholar 

  17. Baylor, D. A. & Nicholls, J. G. J. Physiol., Lond. 203, 555–569 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morán, O., Mateu, L. Loosening of paranodal myelin by repetitive propagation of action potentials. Nature 304, 344–345 (1983). https://doi.org/10.1038/304344a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304344a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing