Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Positive ion composition measurements and acetonitrile in the upper stratosphere

Abstract

Although ion chemistry models1,2 have predicted proton hydrates (PH) that is ions of the form H+(H2O)n, as major ions in the stratosphere, the first in situ mass spectrometric measurements3–5 revealed another ion family, called non-proton hydrates (NPH). The fractional abundance of these NPH, represented by H+Xl(H2O)m, increases from 1 to 90% between 55 and 23 km (refs 1, 5–7). Several proposals5,8,9 have been made for the identity of the molecule X, but high resolution spectra10 and ion abundance measurements11,12 suggest that X should be acetonitrile (CH3CN). This suggestion has been reinforced by laboratory measurements13,14 and in situ data between 20 and 42 km (refs 6, 7), allowing a determination of the concentration profile of X in this altitude region. Here we report the first positive ion composition data obtained using a balloon-borne instrument between 42 and 46 km altitude. These data extend the density profile of X and give supplementary indications about its identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mohnen, V. A. Pure appl. Geophys. 84, 114–153 (1971).

    Article  Google Scholar 

  2. Ferguson, E. E. in Natural Stratosphere of 1974 (CIAP Monogr. 1, 5.42–5.54, 1974).

    Google Scholar 

  3. Arnold, F., Krankowsky, D. & Marien, K. H. Nature 267, 30–32 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Arijs, E., Ingels, J. & Nevejans, D. Nature 271, 642–644 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Arnold, F., Bohringer, H. & Henschen, G. Geophys. Res. Lett. 5, 653–656 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Henschen, G. & Arnold, F. Geophys. Res. Lett. 8, 999–1001 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Arijs, E., Nevejans, D., Ingels, J. & Frederick, P. Annales Geophysicae 1, 163–168 (1983).

    ADS  Google Scholar 

  8. Ferguson, E. E. Geophys. Res. Lett. 5, 1035–1038 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Murad, E. & Swider, W. Geophys. Res. Lett. 6, 929–932 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Arijs, E., Nevejans, D. & Ingels, J. Nature 288, 684–686 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Arnold, F., Henschen, G. & Ferguson, E. E. Planet. Space Sci. 29, 185–193 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Arijs, E., Nevejans, D. & Ingels, J. J. atmos. terr. Phys. 44, 681–694 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Bohringer, H. & Arnold, F. Nature 290, 321–322 (1981).

    Article  ADS  Google Scholar 

  14. Smith, D., Adams, N. G. & Alge, E. Planet. Space Sci. 4, 449–454 (1981).

    Article  ADS  Google Scholar 

  15. Ingels, J., Arijs, E., Nevejans, D., Forth, H. J. & Schaefer, G. Rev. scient. Instrum. 49, 782–784 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Heaps, M. G. Planet. Space Sci. 26, 513–517 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Rosen, J. M. & Hofman, D. J. J. Geophys. Res. 86, 7406–7420 (1981).

    Article  ADS  Google Scholar 

  18. Smith, D. & Adams, N. G. Geophys. Res. Lett. 9, 1085–1087 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Bates, D. R. Planet. Space Sci. 30, 1275–1282 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Becker, K. M. & Ionescu, A. Geophys. Res. Lett. 9, 1349–1351 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Herzberg, G. & Scheibe, G. Z. phys. Chem. B7, 390–394 (1930).

    CAS  Google Scholar 

  22. McElcheran, D. E., Wynen, M. H. J. & Steacie, D. W. R. Can. J. Chem. 36, 321–329 (1958).

    Article  CAS  Google Scholar 

  23. Harris, G. W., Kleindienst, T. E. & Pitts, J. N. Chem. phys. Lett. 80, 479–483 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Brasseur, G., De Rudder, A. & Roucour, A. in Proc. int. Conf. Environmental Pollution, Thessaloniki, 839–910 (1982).

    Google Scholar 

  25. Anderson, J. G., Geophys. Res. Lett. 3, 165–168 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Anderson, J. G. in Proc. NATO Advances Study Institute on Atmospheric Ozone, FAA-EE-80-20, 253–251 (1981).

    Google Scholar 

  27. Heaps, W. S. & McGee, T. J. J. geophys. Res. (submitted); The Stratosphere 1981, Theory and Measurements, 1–105 (WMO Rep. No. 11, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arijs, E., Nevejans, D. & Ingels, J. Positive ion composition measurements and acetonitrile in the upper stratosphere. Nature 303, 314–316 (1983). https://doi.org/10.1038/303314a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303314a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing