Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ aircraft measurements of enhanced levels of N2O associated with thunderstorm lightning

Abstract

During the past few years, considerable research activity has concerned atmospheric lightning as a source of the oxides of nitrogen, nitric oxide (NO) and nitrous oxide (N2O)1–10. Most of this research has centred on NO and has established lightning as a major natural source of this important tropospheric species1–6,8–10. This research has been based mainly on theoretical calculations2,4–6,8,9, laboratory measurements3,10, and on a single measurement of enhanced levels of nitrogen dioxide (NO2), believed to have resulted from NO produced in thunderstorm lightning1. We report here the first series of measurements of enhanced levels of atmospheric N2O associated with thunderstorm lightning. N2O is an environmentally significant species since its reaction with excited oxygen (O(1D)) in the stratosphere produces NO which through the catalytic NOx cycle is responsible for about 65% of the total global destruction of ozone (O3) in the stratosphere11. In addition, due to its absorption at 7.8 µm in the atmospheric window, N2O absorbs and then re-emits Earth-emitted IR radiation which leads to an enhancement of the surface temperature, and, hence, has important implications for climate considerations12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Noxon, J. F. Geophys. Res. Lett. 3, 463–465 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Tuck, A. F. Q. Jl R. met. Soc. 102, 749–755 (1976).

    Article  ADS  Google Scholar 

  3. Chameides, W. L. et al. J. atmos. Sci. 34, 143–149 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Griffing, G. W. J. geophys. Res. 82, 943–950 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Chameides, W. L. Nature 277, 123–125 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Hill, R. D. Geophys. Res. Lett. 6, 945–947 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Levine, J. S., Hughes, R. E., Chameides, W. L. & Howell, W. E. Geophys. Res. Lett. 6, 557–559 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Dawson, G. A. J. atmos. Sci. 37, 174–178 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Hill, R. D., Rinker, R. G. & Wilson, H. D. J. atmos. Sci. 37, 179–192 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Levine, J. S., Rogowski, R. S., Gregory, G. L., Howell, W. E. & Fishman, Geophys. Res. Lett. 8, 357–360 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Graedel, T. E. The Handbook of Environmental Chemistry Vol.2, Part A (ed. Hutzinger, O.) 107–143 (Springer, New York, 1980).

    Google Scholar 

  12. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T. & Hansen, J. E. Science 194, 685–690 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Deal, P. L., Keyser, G. L., Fisher, B. D. & Crabill, N. L. AIAA Pap. 81-2412 (1981).

  14. Fisher, B. D., Keyser, G. L. & Deal, P. L. NASA Tech. Pap. 2087 (1982).

  15. Bates, D. R. & Hays, P. B. Planet. Space. Sci. 15, 189–196 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Zipf, E. C. Nature 287, 523–524 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Zipf, E. C. & Prasad, S. S. Nature 287, 525–526 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Prasad, S. S. Nature 289, 386–388 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Prasad, S. S. & Zipf, E. C. Nature 291, 564–566 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Zipf, E. C. & Prasad, S. S. Nature 295, 133–135 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Parks, G. K., Mauk, B. H., Spiger, R. & Chin Geophys. Res. Lett. 8, 1176–1179 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, J., Shaw, E. In situ aircraft measurements of enhanced levels of N2O associated with thunderstorm lightning. Nature 303, 312–314 (1983). https://doi.org/10.1038/303312a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303312a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing