Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution

Abstract

The crystal structure of alamethicin in nonaqueous solvent has been determined, and refined at 1.5-Å resolution. The molecular conformation of the three crystallographically independent molecules is largely α-helical with a bend in the helix axis at an internal proline residue. The helix structure is highly amphipathic as most of the solvent-accessible polar atoms lie on a narrow strip of surface parallel to the helix axis. Molecular models for the voltage-gated ion channel, with n-fold symmetry and based on the molecular conformations observed in the crystal, are characterized by strong surface complementarity, a hydrophilic interior and a hydrophobic exterior. The channel structures are stabilized by a hydrated annulus of hydrogen-bonded glutamine residues which produce the greatest restriction in the channel diameter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mueller, P. & Rudin, D. O. Nature 217, 713–719 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Payne, J. W., Jakes, R. & Hartley, B. S. Biochem. J. 117, 757–766 (1970).

    Article  CAS  Google Scholar 

  3. Balasubramanian, T. M. et al. J. Am. chem. Soc. 103, 6127–6132 (1981).

    Article  CAS  Google Scholar 

  4. Gisin, B. F., Kobayashi, S., Davis, D. G. & Hall, J. E. in Proc. 5th Am. Peptide Symp. (eds Goodman, M. & Meienhojer, J.) 215–218 (Wiley, New York, 1977).

    Google Scholar 

  5. Pandey, R. C., Cook, J. C. & Rinehart, K. L. J. Am. chem. Soc. 99, 8469–8483 (1977).

    Article  CAS  Google Scholar 

  6. Ovchinnikov, U., Kiryushkin, A. & Kozhevnikova, I. V. J. gen. Chem. U.S.S.R. 41, 2105–2116 (1971).

    Google Scholar 

  7. Martin, D. R. & Williams, R. J. P. Biochem. J. 153, 181–190 (1976).

    Article  CAS  Google Scholar 

  8. Lattore, R. & Alvarez, O. Physiol. Rev. 61, 77–150 (1981).

    Article  Google Scholar 

  9. Eisenberg, M., Hall, J. E. & Mead, C. A. J. Membrane Biol. 14, 143–176 (1973).

    Article  CAS  Google Scholar 

  10. Gordon, L. G. M. & Hayden, D. A. Phil. Trans. R. Soc. B270, 433–447 (1975).

    Article  CAS  Google Scholar 

  11. Bohein, G. & Kolb, H. A. J. Membrane Biol. 38, 99–150 (1978).

    Article  Google Scholar 

  12. Latorre, R. & Donovan, J. J. Acta physiol. scand. Suppl. 481, 37–45 (1980).

    CAS  PubMed  Google Scholar 

  13. Gordon, L. G. M. & Haydon, D. A. Biochim. biophys. Acta 255, 1014–1018 (1972).

    Article  CAS  Google Scholar 

  14. Boheim, G. J. Membrane Biol. 19, 277–303 (1974).

    Article  CAS  Google Scholar 

  15. Gordon, L. G. M. in Drug and Transport Processes (ed. Callingham, B. A.), 251–264 (Baltimore University Press, 1974).

    Google Scholar 

  16. Eisenberg, M., Kleinberg, M. E. & Shaper, J. H. Ann. N.Y. Acad. Sci. 303, 281–291 (1977).

    CAS  PubMed  Google Scholar 

  17. Hanke, W. & Boheim, G. Biochim. biophys. Acta 596, 456–462 (1980).

    Article  CAS  Google Scholar 

  18. Bauman, G. & Mueller, P. J. supramolec. Struct. 2, 538–557 (1974).

    Article  Google Scholar 

  19. Hall, J. E. Biophys. J. 15, 934–939 (1975).

    Article  ADS  CAS  Google Scholar 

  20. McMullen, A. I., Marlborough, D. I. & Bayley, P. M. FEBS Lett. 16, 278–280 (1971).

    Article  CAS  Google Scholar 

  21. Jung, G., Dubishar, N. & Leibfritz, D. Eur. J. Biochem. 54, 395–409 (1975).

    Article  CAS  Google Scholar 

  22. Shamala, N., Nagaraj, R. & Balaram, P. Biochem. biophys. Res. Commun. 79, 292–298 (1977).

    Article  CAS  Google Scholar 

  23. Smith, G. C. et al. J. Am. chem. Soc. 103, 1493–1501 (1981).

    Article  CAS  Google Scholar 

  24. Butters, T. et al. Angew Chem. 93, 904–905 (1981).

    Article  CAS  Google Scholar 

  25. Meyer, C. E. & Reusser, F. Experientia 23, 85–86 (1967).

    Article  CAS  Google Scholar 

  26. Sowadski, J. M., Foster, B. A. & Wyckoff, H. W. J. molec. Biol. 150, 245–272 (1981).

    Article  CAS  Google Scholar 

  27. Blow, D. M. & Crick, F. H. C. Acta crystallogr. 12, 749–802 (1958).

    Google Scholar 

  28. Hendrickson, W. A. & Konnert, J. H. in Biomolecular Structure Function, Conformation and Evolution (ed. Srinivasan, R.) 43–57 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  29. Connolly, M. thesis, Univ. California (1981).

  30. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  31. Latorre, R., Miller, C. G. & Quay, S. Biophys. J. 36, 803–809 (1981).

    Article  CAS  Google Scholar 

  32. McIntosh, T. J., Ting-Beall, H. P. & Zampighi, G. Biochim. biophys. Acta 685, 51–60 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, R., Richards, F. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300, 325–330 (1982). https://doi.org/10.1038/300325a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300325a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing