Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal convection in magmas generated by hot-plate heating

Abstract

A condition is derived here for the onset of thermal convection in a layer of silicate partial melt that is generated by suddenly and continuously supplying an anomalous heat flux or by maintaining an anomalous high temperature on a plane at some depth within the Earth so that the overlying material is heated to greater-than-solidus temperatures. The results show that for highly fluid basaltic magmas convection may begin in a layer only 10-m thick, whereas for viscous rhyolitic magmas, at least a 10-km thick layer is required. The fact that thermal convection may occur within such a thin layer of basaltic partial melt may partially explain the homogeneity of large volumes of flood basalts that occur. Since convection within rhyolitic partial melts is unlikely, homogeneous rhyolites must be the result of mixing in magma chambers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodge, D. S. Nature 251, 297–299 (1974).

    Article  ADS  Google Scholar 

  2. Yoder, H. S. Jr Bull. volcan. 41, 301–316 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Yoder, H. S. Jr Yb Carnegie Instn Wash. 79, 263–267 (1980).

    Google Scholar 

  4. Arndt, N. T. Contr. Miner. Petrol. 64, 205–221 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Presnall, B. C., Simmon, C. L. & Porath, H. J. geophys. Res. 77, 5665–5672 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Sleep, N. H. Bull. geol. Soc. Am. 85, 1225–1232 (1974).

    Article  Google Scholar 

  7. Turcotte, D. L. & Ahern, J. L. J. geophys. Res. 83, 767–772 (1978).

    Article  ADS  Google Scholar 

  8. Ahern, J. L. & Turcotte, D. C. Earth planet. Sci. Lett. 45, 115–122 (1979).

    Article  ADS  Google Scholar 

  9. Turcotte, D. L. J. Volcan. Geotherm. Res. 10, 267–278 (1981).

    Article  ADS  Google Scholar 

  10. Lapwood, E. R. Proc. Cambridge Phil. Soc. 44, 508–521 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  11. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids 2nd edn (Clarendon, Oxford, 1959).

    MATH  Google Scholar 

  12. Bear, J. Dynamics of Fluids in Porous Media (Elsevier, New York, 1972).

    MATH  Google Scholar 

  13. Yoder, H.S. Jr Generation of Basaltic Magma (National Academy of Sciences, Washington DC, 1976).

    Google Scholar 

  14. Murase, T. & McBirney, A. R. Bull. geol. Soc. Am. 84, 3563–3592 (1973).

    Article  CAS  Google Scholar 

  15. Burnham, C. W. Geol. Soc. Am. Spec. Pap. 76, 26 (1963).

    Google Scholar 

  16. Van der Molen, I. & Paterson, M. S. Contr. Miner. Petrol. 70, 299–318 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowell, R. Thermal convection in magmas generated by hot-plate heating. Nature 300, 253–254 (1982). https://doi.org/10.1038/300253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300253a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing