Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action potential repolarization may involve a transient, Ca2+ -sensitive outward current in a vertebrate neurone

Abstract

Repolarization of the action potential in squid axon1 and several types of neurones2–4 involves a voltage-activated potassium (K+) current. Voltage clamp analysis has demonstrated that this current has rapid activation kinetics1,3–5. In several neuronal types, the same technique has also revealed a slowly activated K+ current that is calcium (Ca2+)-sensitive3,5–10. This slow Ca2+-activated K+ current is the major current underlying the late, slower portion of the after-hyperpolarization following an action potential11–14. In several muscle types, fast, transient Ca2+-dependent K+ currents have been described15–17 which may contribute to repolarization of the action potential. Rapidly activating, Ca2+-dependent K+ currents have been observed in sympathetic neurones of the bullfrog and it has been suggested that they contribute to action potential repolarization of those neurones8,9,18. We have studied the membrane currents in bullfrog sympathetic neurones using voltage clamp methods and report here a transient outward current that appears to be composed of two separate currents. One of those currents is a transient, Ca2+-sensitive outward current as indicated by a significant reduction of the current by treatments that reduce or block Ca2+ entry (Mn2+, Cd2+, Co2+, Mg2+ or Ca2+ -free Ringer). Such treatments also decreased the rate of action potential repolarization. The results suggest that this current is involved in repolarization of the action potential and consequently may regulate Ca2+ entry into the neurone during spike activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  2. Aldrich, R. W., Getting, P. A. & Thompson, S. H. J. Physiol., Lond. 291, 531–544 (1979).

    Article  Google Scholar 

  3. Barrett, E. F., Barrett, J. N. & Crill, W. E. J. Physiol., Lond. 304, 251–276 (1980).

    Article  CAS  Google Scholar 

  4. Connor, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 31–53 (1971).

    Article  CAS  Google Scholar 

  5. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  6. Thompson, S. H. J. Physiol., Lond. 265, 465–488 (1977).

    Article  ADS  CAS  Google Scholar 

  7. MacDermott, A. B. & Weight, F. F. Fedn Proc. 39, 2074 (1980).

    Google Scholar 

  8. Constanti, A., Adams, P. R. & Brown, D. A. Soc. Neurosci. Abstr. 7, 14 (1981).

    Google Scholar 

  9. Weight, F. F. & MacDermott, A. B. in Physiology and Pharmacology of Epileptogenic Phenomena (eds Klee, M. R., Lux, H. D. & Speckmann, E. J.) 227–233 (Raven, New York, 1982).

    Google Scholar 

  10. Adams, P. R., Brown, D. A. & Constanti, A. in Physiology and Pharmacology of Epileptogenic Phenomena (eds Klee, M. R., Lux, H. D. & Speckmann, E. J.) 175–187 (Raven, New York, 1982).

    Google Scholar 

  11. Minota, S. Jap. J. Physiol. 24, 501–512 (1974).

    Article  CAS  Google Scholar 

  12. Barrett, E. F. & Barrett, J. N. J. Physiol., Lond. 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  13. Busis, N. A. & Weight, F. F. Nature 263, 434–436 (1976).

    Article  ADS  CAS  Google Scholar 

  14. McAfee, D. A. & Yarowsky, P. J. J. Physiol., Lond. 290, 507–523 (1979).

    Article  CAS  Google Scholar 

  15. Vassort, G. J. Physiol., Lond. 252, 713–734 (1975).

    Article  CAS  Google Scholar 

  16. Mounier, Y. & Vassort, G. J. Physiol., Lond. 251, 609–625 (1975).

    Article  CAS  Google Scholar 

  17. Siegelbaum, S. A. & Tsien, R. W. J. Physiol., Lond. 299, 485–506 (1980).

    Article  CAS  Google Scholar 

  18. Adams, P. R., Constanti, A., Brown, D. A. & Clark, R. B. Nature 296, 746–749 (1982).

    Article  ADS  CAS  Google Scholar 

  19. MacDermott, A. B., Connor, E. A., Dionne, V. E. & Parsons, R. L. J. gen. Physiol. 75, 39–60 (1980).

    Article  CAS  Google Scholar 

  20. Connor, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 21–30 (1971).

    Article  CAS  Google Scholar 

  21. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  22. Smith, S. J., MacDermott, A. B. & Weight, F. F. Neurosci. Abstr. 7, 15 (1981).

    Google Scholar 

  23. Coraboeuf, E. & Carmeliet, E. Pflügers Arch. ges. Physiol. 392, 352–359 (1982).

    Article  CAS  Google Scholar 

  24. Aldrich, R. W., Getting, P. A. & Thompson, S. H. J. Physiol., Lond. 291, 507–530 (1979).

    Article  Google Scholar 

  25. Hermann, A. & Gorman, A. L. F. J. gen. Physiol. 78, 87–110 (1981).

    Article  CAS  Google Scholar 

  26. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 231–239 (1975).

    Article  Google Scholar 

  27. Connor, J. A. J. Physiol., Lond. 286, 41–60 (1979).

    Article  CAS  Google Scholar 

  28. Meech, R. W. Ann. Rev. Biophy. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Armstrong, C. M. & Taylor, S. R. Biophys. J. 30, 473–488 (1980).

    Article  CAS  Google Scholar 

  30. Eaton, D. C. & Brodwick, M. S. J. gen. Physiol. 75, 727–750 (1980).

    Article  CAS  Google Scholar 

  31. Constanti, A., Adams, P. R. & Brown, D. A. Brain Res. 206, 244–250 (1981).

    Article  CAS  Google Scholar 

  32. Kenyon, J. L. & Gibbons, W. R. J. gen. Physiol. 73, 117–138 (1979).

    Article  CAS  Google Scholar 

  33. Schwindt, P. C. & Crill, W. E. J. Neurophysiol. 46, 1–16 (1981).

    Article  CAS  Google Scholar 

  34. Adams, P. R. in Advances in Physiological Sciences Vol. 4 (ed. Salanki, J.) 135–138 (Pergamon, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDermott, A., Weight, F. Action potential repolarization may involve a transient, Ca2+ -sensitive outward current in a vertebrate neurone. Nature 300, 185–188 (1982). https://doi.org/10.1038/300185a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300185a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing