Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain

Abstract

Several observations, both in vivo and in vitro, have indicated that the development and maturation of mammalian skeletal muscle fibres is influenced by nerve–muscle interactions. Morphological maturation of newly regenerated adult mouse muscle fibres in an organotypic nerve–muscle culture system depends on the presence of spinal cord neurones1. Sciatic nerve transection in newborn rats has been shown to modify the development of the histochemical and contractile properties of the denervated muscles2–4. In addition, neural influences are important for the appearance of certain of the myosin small subunits5,6. It has been proposed that the nerve also controls the changes in myosin heavy chain isozymes appearing during development5,7–9. One such transition occurs in rat muscle where the neonatal form of myosin heavy chain is replaced by the adult form during the second post-natal week8. Here we demonstrate that innervation of the rat gastrocnemius muscle (a fast-contracting muscle in the adult) is not required for the appearance of the adult form of myosin heavy chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ecob, M. S. J. neurol. Sci. (in the press).

  2. Engel, W. K. & Karpati, G. Devl Biol. 17, 713–723 (1968).

    Article  CAS  Google Scholar 

  3. Shafiq, S. A., Asiedu, S. A. & Milhorat, A. T. Expl Neurol. 35, 529–540 (1972).

    Article  CAS  Google Scholar 

  4. Brown, M. D. Nature 244, 178–179 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Rubinstein, N. A. & Kelly, A. M. Devl Biol. 62, 473–485 (1978).

    Article  CAS  Google Scholar 

  6. Ishiura, S., Nonaka, I., Sugita, H. & Mikawa, T. Expl Neurol. 73, 487–495 (1981).

    Article  CAS  Google Scholar 

  7. Gauthier, G. F., Lowey, S. & Hobbs, A. W. Nature 274, 25–29 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Whalen, R. G. et al. Nature 292, 805–809 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Whalen, R. G. Adv. physiol. Sci. 5, 63–69 (1981).

    CAS  Google Scholar 

  10. Rubinstein, N. A. & Kelly, A. M. J. Cell Biol. 90, 128–144 (1981).

    Article  CAS  Google Scholar 

  11. Hoh, J. F. Y., McGrath, P. A. & White, R. I. Biochem. J. 157, 87–95 (1976).

    Article  CAS  Google Scholar 

  12. d'Albis, A., Pantaloni, C. & Bechet, J.-J. Eur. J. Biochem. 99, 261–272 (1979).

    Article  CAS  Google Scholar 

  13. Lowey, S., Benfield, P. A., Silberstein, L. & Lang, L. M. Nature 282, 522–524 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Whalen, R. G., Schwartz, K., Bouveret, P., Sell, S. M. & Gros, F. Proc. natn. Acad. Sci. U.S.A. 76, 5197–5201 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Salmons, S. & Henriksson, J. Muscle Nerve 4, 94–105 (1981).

    Article  CAS  Google Scholar 

  16. Jolesz, F. & Sreter, F. A. A. Rev. Physiol. 43, 531–552 (1981).

    Article  CAS  Google Scholar 

  17. Gutmann, E. A. Rev. Physiol. 38, 177–216 (1976).

    Article  CAS  Google Scholar 

  18. Johnson, M. A., Mastaglia, F. L., Montgomery, A. G., Pope, B. & Weeds, A. G. FEBS Lett. 110, 230–235 (1980).

    Article  CAS  Google Scholar 

  19. Hoh, J. F. Y., McGrath, P. A. & Hale, P. T. J. molec. cell. Cardiol. 10, 1053–1076 (1978).

    Article  CAS  Google Scholar 

  20. Lompré, A.-M., Bouveret, P., Leger, J. & Schwartz, K. J. immun. Meth. 28, 143–148 (1979).

    Article  Google Scholar 

  21. Schwartz, K., Lompré, A.-M., Bouveret, P., Wisnewsky, C. & Swynghedauw, B. Eur. J. Biochem. 104, 341–346 (1980).

    Article  CAS  Google Scholar 

  22. Tobin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  Google Scholar 

  23. Whalen, R. G., Butler-Browne, G. S. & Gros, F. J. molec. Biol. 126, 415–431 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler-Browne, G., Bugaisky, L., Cuénoud, S. et al. Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain. Nature 299, 830–833 (1982). https://doi.org/10.1038/299830a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299830a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing