Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potent new inhibitors of human renin

Abstract

The renal acid protease renin selectively cleaves its plasma substrate angiotensinogen to release the decapeptide angiotensin I, which in turn is cleaved by a carboxydipeptidase converting enzyme to yield the pressor octapeptide angiotensin II1. It is generally accepted that the renin–angiotensin system has a physiological role in blood pressure and electrolyte homeostasis2, and that abnormalities of the system contribute to certain forms of hypertension3. We previously showed that reduction of the Leu10–Leu11 scissile peptide bond in the (6–13) octapeptide sequence 2 of equine angiotensinogen produced potent and selective inhibitors of canine plasma renin5. We have now used the same approach to modify the recently elucidated N-terminal sequence6 of human angiotensinogen and report here the production of highly active and species-specific in vitro inhibitors of endogenous human renin cleaving renin substrate in human plasma. Whereas the (6–13) octapeptide H-112 of human angiotensinogen is only a weak inhibitor of human plasma renin (IC50 = 313 µM), the analogue H-113, in which the scissile Leu–Val bond has been reduced, has IC50 = 0.19 µM. Extension of H-113 with Pro at the N-terminus and with Lys at the C-terminus7, giving the decapeptide derivative H-142, increases inhibitory potency further (IC50 = 10 nM). We believe that the high in vitro inhibitory potencies of H-113 and H-142 are due to the ability of the reduced moiety —CH2—NH— to act as a non-hydrolysable analogue of the tetrahedral transition state formed during hydrolysis of the (10–11) peptide bond. H-113 and H-142 are strongly species specific, and are highly specific for renin among acid proteases: H-142 has no inhibitory effect in vitro on human cathepsin D or renal acid protease at a concentration of 712 µM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skeggs, L. T., Dorer, F. E., Levine, M., Lentz, K. E. & Kahn, J. R. in The Renin-Angiotensin System (eds Johnson, J. A. & Anderson, R. R.) 1–27 (Plenum, New York, 1980).

    Book  Google Scholar 

  2. MacGregor, G. A., Markandu, N. D., Roulston, J. E., Jones, J. C. & Morton, J. J. Nature 291, 329–331 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Atkinson, A. B. et al. in The Therapeutics of Hypertension, 29–61 (Academic Press and The Royal Society of Medicine, London, 1980).

    Google Scholar 

  4. Parry, M. J., Russell, A. B. & Szelke, M. in Chemistry and Biology of Peptides (ed. Meienhofer, J.) 541–544 (Ann Arbor Science, Ann Arbor, 1972).

    Google Scholar 

  5. Szelke, M. et al. Hypertension 4, Suppl. II, 59–69 (1982).

    CAS  PubMed  Google Scholar 

  6. Tewksbury, D. A., Dart, R. A. & Travis, J. Biochem. biophys. Res. Commun. 99, 1311–1315 (1981).

    Article  CAS  Google Scholar 

  7. Burton, J., Cody, R. J., Herd, J. A. & Haber, E. Proc. natn. Acad. Sci. U.S.A. 77, 5476–5479 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Skeggs, L. T., Kahn, J. R., Lentz, K. & Shumway, N. P. J. exp. Med. 106, 439–453 (1957).

    Article  CAS  Google Scholar 

  9. Skeggs, L. T., Lentz, K. E., Hochstrasser, H. & Kahn, J. R. Can. med. Ass. J. 90, 185–189 (1964); J. exp. Med. 128, 13–34 (1968).

    CAS  PubMed  Google Scholar 

  10. Kokubu, T. et al. Nature 217, 456–457 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Kokubu, T. et al. Biochem. Pharmac. 22, 3217–3223 (1973).

    Article  CAS  Google Scholar 

  12. Poulsen, K., Burton, J. & Haber, E. Biochemistry 12, 3877–3882 (1973).

    Article  CAS  Google Scholar 

  13. Burton, J., Poulsen, K. & Haber, E. Biochemistry 14, 3892–3898 (1975).

    Article  CAS  Google Scholar 

  14. Haber, E. & Burton, J. Fedn Proc. 38, 2768–2773 (1979).

    CAS  Google Scholar 

  15. Quinn, T. & Burton, J. in Peptides (eds Rich, D. H. & Gross, E.) 443–445 (Pierce Chemical Company, Rockford, 1981).

    Google Scholar 

  16. Lienhard, G. E. Science 180, 149–154 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Hille, M. B., Barrett, A. J., Dingle, J. T. & Fell, H. B. Expl Cell. Res. 61, 470 (1970).

    Article  CAS  Google Scholar 

  18. Barany, G. & Merrifield, R. B. in The Peptides (eds Gross, E. & Meienhofer, J.) 1–284 (Academic, New York, 1980).

    Google Scholar 

  19. Chillemi, N. & Merrifield, R. B. Biochemistry 8, 4344–4346 (1969).

    Article  CAS  Google Scholar 

  20. Brown, T. & Jones, J. H. J. chem. Soc. chem. Commun. 648 (1981).

  21. Yamashiro, D. & Li, C. H. J. Am. chem. Soc. 95, 1310–1315 (1973).

    Article  CAS  Google Scholar 

  22. Erickson, B. W. & Merrifield, R. B. J. Am. chem. Soc. 95, 3757–3763 (1973).

    Article  CAS  Google Scholar 

  23. Felix, A. M. & Jimenez, M. H. Analyt. Biochem. 52, 377–381 (1973).

    Article  CAS  Google Scholar 

  24. König, W. & Geiger, R. Chem. Ber. 103, 788–798 (1970).

    Article  Google Scholar 

  25. Szelke, M. et al. in Molecular Endocrinology (eds MacIntyre, I. & Szelke, M.) 57–70 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  26. Ito, A., Takahashi, R. & Baba, Y. Chem. Pharm. Bull. 23, 3081–3087 (1975).

    Article  CAS  Google Scholar 

  27. Szelke, M., Hallett, A. & Jones, D. M. European Patent Application 0-045-665 (February 1982).

  28. Millar, J. A., Leckie, B. J., Morton, J. J., Jordan, J. & Tree, M. Clinica chim. Acta 101, 5–15 (1980).

    Article  CAS  Google Scholar 

  29. Poulsen, K. & Jörgensen, J. J. clin. Endocr. Metab. 39, 816–815 (1974).

    Article  CAS  Google Scholar 

  30. Hackenthal, E., Hackenthal, R. & Hilgenfeldt, U. Biochim. biophys. Acta 522, 574–588 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szelke, M., Leckie, B., Hallett, A. et al. Potent new inhibitors of human renin. Nature 299, 555–557 (1982). https://doi.org/10.1038/299555a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299555a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing