Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diversity of cholesterol exchange explained by dissolution into water

Abstract

It is usually considered that the stability of lipid bilayers results from the elastic resistance of water to the dissolution of hydrophobic compounds1,2. However, attempts to describe this unique property of water in more detail2,3 have been difficult and some authors4–7 believe that the dispersion attraction of apolar molecules (London–van der Waals forces) is the most important factor. Details of the transfer kinetics into water of apolar compounds may elucidate this. Here I describe an analysis of the kinetics of cholesterol exchange between erythrocytes and lipoproteins that makes it possible to calculate precisely the widely differing specific rate constants of cholesterol dissolution from both kinds of structures. The analysis also accounts qualitatively for the different exchange kinetics reported for homologous and heterologous dispersed systems in water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tanford, C. Science 200, 1012–1018 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Pratt, L. R. & Chandler, D. J. chem. Phys. 67, 3683–3704 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Chan, D. Y. C., Mitchell, J., Ninham, B. W. & Pailthorpe, B. A. J. chem. Soc. Farad. Trans. 74, 2050–2062 (1978).

    Article  CAS  Google Scholar 

  4. Hildebrand, J. H. Proc. natn. Acad. Sci. U.S.A. 76, 194 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Cramer, R. D. J. Am. chem. Soc. 99, 5408–5412 (1977).

    Article  CAS  Google Scholar 

  6. Amidon, G. L., Pearlmann, R. S. & Anik, S. T. J. theor. Biol. 77, 161–170 (1979).

    Article  CAS  Google Scholar 

  7. Salem, L. Can. J. biochem. Physiol. 40, 1287–1298 (1962).

    Article  CAS  Google Scholar 

  8. Hagerman, J. S. & Gould, G. Proc. Soc. exp. Biol. Med. 78, 329–332 (1951).

    Article  CAS  Google Scholar 

  9. Quarfordt, S. H. & Hilderman, H. L. J. Lipid Res. 11, 528–535 (1970).

    CAS  PubMed  Google Scholar 

  10. Gottlieb, M. H. Biochim. biophys. Acta 600, 530–541 (1980).

    Article  CAS  Google Scholar 

  11. Jonas, A. & Maine, G. T. Biochemistry 18, 1722–1728 (1979).

    Article  CAS  Google Scholar 

  12. Giraud, F. & Claret, M. FEBS Lett. 103, 186–191 (1979).

    Article  CAS  Google Scholar 

  13. Bojesen, E. & Bojesen, I. N. Acta physiol. scand. 114, 513–523 (1982).

    Article  CAS  Google Scholar 

  14. Nakagawa, Y., Inoue, K. & Nojima, S. Biochim. biophys. Acta 553, 307–319 (1979).

    Article  CAS  Google Scholar 

  15. Backer, J. M. & Dawidowicz, E. A. Biochemistry 20, 3805–3810 (1981).

    Article  CAS  Google Scholar 

  16. McLean, L. R. & Phillips, M. C. Biochemistry 20, 2893–2900 (1981).

    Article  CAS  Google Scholar 

  17. Gilbert, D. B., Tanford, C. & Reynold, J. A. Biochemistry 14, 444–448 (1975).

    Article  CAS  Google Scholar 

  18. Armitage, P. Statistical Methods in Medical Research, 319–320 (Blackwell, Oxford and Edinburgh, 1971).

    Google Scholar 

  19. Zlatkis, A., Zak, B. & Boyle, A. J. J. Lab. clin. Med. 41, 486–492 (1953).

    CAS  PubMed  Google Scholar 

  20. Huang, C. Nature 259, 242–243 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Bicknell-Brown, E. & Brown, K. G. Biochem. biophys. Res. Commun. 94, 638–645 (1980).

    Article  CAS  Google Scholar 

  22. Lund-Katz, S. & Phillips, M. C. Biochem. biophys. Res. Commun. 100, 1735–1743 (1981).

    Article  CAS  Google Scholar 

  23. Hamilton, J. A. & Cordes, E. H. J. biol. Chem. 253, 5193–5198 (1978).

    CAS  PubMed  Google Scholar 

  24. Zuppiroli, L. Le Traitement Statistique des Donnees Experimentales, Rapport CEA-R-4802 (Service de Documentation, CEN, Saclay, France, 1976).

    Google Scholar 

  25. Bojesen, E. Scand. J. clin. Lab. Invest. 38, Suppl. 150, 26–31 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojesen, E. Diversity of cholesterol exchange explained by dissolution into water. Nature 299, 276–278 (1982). https://doi.org/10.1038/299276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299276a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing