Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of sulphur and geothermometry of hydrothermal sulphides from the Galapagos Rift, 86 °W

Abstract

Polymetallic hydrothermal massive sulphides from a mid-ocean ridge were first recovered in 19781,2, from the East Pacific Rise (EPR) at 21° N, and later ‘black smokers’ were found3 debouching fluids at 380°±30 °C. The Galapagos Rift and Fracture Zone Intersection (GRAFZI) Project of 1980 discovered sulphides in inactive mounds with up to 27% Cu and 31% Fe at 86° W on the Galapagos Rift4, that are chemically very different from the EPR 21° N sulphides (up to 50% Zn). Stable isotope studies were initiated in an attempt to find the origin of the sulphide sulphur, to determine the temperature of formation of an equilibrium assemblage of chalcopyrite (CuFeS2) and pyrite (FeS2), and to understand the operative seawater/rock ratio, and therefore the controls on permeability of the oceanic crust responsible for producing hydrothermal sulphides. There has been relatively little similar work on samples from 21° N (refs 5–7). We report here results which indicate sulphide formation at 390°±20 °C that is almost identical to that of the 21 °N black smokers which were measured directly by temperature probe. The seawater sulphate contribution to the sulphur of the sulphides was much more dominant than at 21° N (ref. 7), and suggests a more fractured crust and/or more rapid hydrothermal solution flow rates, induced from higher seawater/rock ratios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Francheteau, J. et al. Nature 277, 523–528 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Hekinian, R., Fevrier, M., Bischoff, J. L., Picot, P. & Shanks, W. C. Science 207, 1433–1444 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Spiess, F. N. et al. Science 207, 1421–1433 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Malahoff, A., Cronan, D. S., Skirrow, R. & Embley, R. W. Mar. Mining (in the press).

  5. Arnold, M. & Sheppard, S. M. F. Earth planet. Sci. Lett. 56, 148–156 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Haymon, R. M. & Kastner, M. Earth planet. Sci. Lett. 53, 363–381 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Styrt, M. M. et al. Earth planet. Sci. Lett. 53, 382–390 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Tatlock, D. B. U.S. geol. Surv. Bull., 1209 (1966).

  9. Jackson, M. L. Soil Chemical Analysis (Constable, London, 1958).

    Google Scholar 

  10. Robinson, B. W. & Kusakabe, M. Analyt. Chem. 47, 1179–1181 (1975).

    Article  CAS  Google Scholar 

  11. Clayton, R. N. & Mayeda, T. K. Geochim. cosmochim. Acta 27, 43–52 (1963).

    Article  ADS  CAS  Google Scholar 

  12. Coleman, M. L. IGS Stable Isotope Rep. No. 45 (1980).

  13. Adamides, N. G. Proc. Int. Ophiolite Symp., Geol. Surv., Cyprus, 117–127 (1979).

  14. Kajiwara, Y. & Krouse, H. R. Can. J. Earth. Sci. 8, 1397–1408 (1971).

    Article  ADS  CAS  Google Scholar 

  15. Sakai, H., Veda, A., & Field, G. W. U.S. Geol. Surv. Open-File Rep. 78–101 (1978).

  16. Craig, H. et al. EOS 61, 392 (1980).

    Google Scholar 

  17. Bottinga, J. & Javoy, M. Earth planet. Sci. Lett. 20, 250–265 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Matsuhisa, Y., Goldsmith, J. R., & Clayton, R. N. Geochim. cosmochim. Acta 43, 1131–1140 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. Barnes, H. L.) 509–567 (Wiley, New York, 1979).

    Google Scholar 

  20. Rye, R. O. & Ohmoto, H. Econ. Geol. 69, 826–842 (1974).

    Article  CAS  Google Scholar 

  21. Kaplan, I. R., Sweeney, R. E. & Nissenbaum, A. in Hot Brines and Recent Heavy Metal Deposits in the Red Sea (eds Degens, T. & Ross, D. A.) 474–498 (Springer, New York, 1969).

    Book  Google Scholar 

  22. Shanks, W. C. & Bischoff, J. L. Geol. Soc. Am. Ann. Mtg. Abstr. 1266 (1975).

  23. Ohmoto, H., Cole, D. R. & Mottl, M. J. EOS 57, 342 (1976).

    Google Scholar 

  24. Spooner, E. T. C. in Volcanic Processes in Ore Genesis 58–71 (Institute of Mining and Metallurgy, London, 1976).

    Google Scholar 

  25. Heaton, T. H. E. & Sheppard, S. M. F. in Volcanic Processes in Ore Genesis, 58–71 (Institute of Mining and Metallurgy, London, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skirrow, R., Coleman, M. Origin of sulphur and geothermometry of hydrothermal sulphides from the Galapagos Rift, 86 °W. Nature 299, 142–144 (1982). https://doi.org/10.1038/299142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299142a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing