Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Historical evidence for a dramatic increase in the nitrate component of acid rain

Abstract

The concentrations of nitrate and ammonium ion in rainfall have an important effect on precipitation pH. We have collected sets of rainfall analyses from non-urban sites in North America and western Europe, which start from last century, and we show here that there is a marked increase in the annual deposit of nitrate ion compared with relatively stable levels of ammonium ion deposit. The increase apparent in the data from the US parallels the increases in nitrogen oxide emissions from combustion processes and is large enough for the nitrate ion to contribute almost as much to the acidity of rainfall as the sulphate ion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brimblecombe, P. & Pitman, J. I. Tellus 32, 261–267 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Russell, E. J. & Richards, E. H. J. agric. Soc. 9, 309–337 (1919).

    Article  CAS  Google Scholar 

  3. Liebig, J. Chemistry and its Applications to Agriculture and Physiology 3rd edn (Taylor and Walton, London, 1843).

    Book  Google Scholar 

  4. Soderlund, R. & Svensson, B. H. SCOPE 7, 27–73 (1976).

    Google Scholar 

  5. Miller, N. H. J. J. agric. Sci. 1, 280–303 (1905).

    Article  CAS  Google Scholar 

  6. Galloway, J. N. & Whelpdale, D. M. Atmos. Envir. 14, 409–417 (1980).

    Article  CAS  Google Scholar 

  7. Hammond, A. L., Metz, W. D. & Maugh, T. H. II Energy and the Future (American Association for the Advancement of Science, 1973).

    Google Scholar 

  8. Mulbhaier, J. L. in Solid Residential Fuels (eds. Cooper, J. A. & Malek, D.) 164–187 (Oregon Graduate Centre, 1982).

    Google Scholar 

  9. Perkins, H. C. Air Pollution (McGraw-Hill, New York, 1974).

    Google Scholar 

  10. Wong, C. S. Science 200, 197–200 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Stedman, D. H. & Shetter, R. E. Adv. Envir. Sci. Technol (in the press).

  12. Robinson, E. & Robbins, R. C. Air Pollut. Control Ass. J. 20, 303 (1970).

    Article  CAS  Google Scholar 

  13. Robinson, E. & Robbins, R. C. in (ed. Singer, S. F.) The Changing Global Environment 50–64 (Springer, New York, 1970).

    Google Scholar 

  14. Charlson, R. J. & Rodhe, H. Nature 295, 683–685 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Martin, A. & Barber, F. R. CEGB (MR) Rural Rain Sampling Sites: Monthly Mean Concentration Values 1975-1980 (CEGB MID/SSD/81/0046/M, 1981).

    Google Scholar 

  16. Bach, W. Rev. Geophys. Space Phys. 14, 429–474 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Collinson, R. C. & Mensching, J. E. New York St. agric. exp. Stat. tech. Bull. No. 193 (1932).

  18. Failyer, G. H. & Willard, J. T. 2nd Ann. Rep. Kansas agric. Stat. 132–132 (1889).

  19. Freeman, V. F. J. Am. Soc. Agron. 16, 356–8 (1924).

    Article  CAS  Google Scholar 

  20. Likens, G. E. Biogeochemistry of a Forested Ecosystem (Springer, Berlin, 1977).

    Book  Google Scholar 

  21. Mooers, C. A., McIntyre, W. H. & Young, J. B. Univ. Tennessee agric. exp. Stat. Bull. No. 138 (1927).

  22. Shutt, F. T. Proc. Trans. R. Soc. Can. 4, 55–59 (1910).

    Google Scholar 

  23. Shutt, F. T. Proc. Trans. R. Soc. Can. 8, 83–87 (1914).

    Google Scholar 

  24. Shutt, F. T. & Dorrance, R. L. Proc. Trans. R. Soc. Can. 11, 63–67, (1917).

    CAS  Google Scholar 

  25. Shutt, F. T. & Medley, B. Proc. Trans. R. Soc. Can. 19, 1–10 (1925).

    CAS  Google Scholar 

  26. Wilson, B. D. J. Am. Soc. Agron. 18, 1208–1212 (1926).

    Google Scholar 

  27. Cavender, J. H., Kircher, D. S. & Hoffman, A. J. US EPA Publ. No. AP-115 (1973).

  28. Clark, T. L. Atmos. Envir. 14, 960–961 (1980).

    Article  Google Scholar 

  29. Wahl, E. W. & Lawson, T. L. Mon. Weath. Rev. 98, 259–265 (1970).

    Article  ADS  Google Scholar 

  30. Tellus 8, 112 (1956).

  31. Erikson, E. Tellus 4, 215–232 (1952).

    ADS  Google Scholar 

  32. Jenkinson, D. S. Rothamsted Exptl Stat Rept. 1976, 103–109 (1977).

  33. Dennington, V. N. & Chadwick, M. J. J. appl. Ecol. 15, 303–315 (1978).

    Article  CAS  Google Scholar 

  34. White, E., Starkey, R. S. & Saunders, M. J. J. Appl. Ecol. 8, 743–749 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimblecombe, P., Stedman, D. Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 298, 460–462 (1982). https://doi.org/10.1038/298460a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing