Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart

Abstract

During adrenergic stimulation heart cells develop increased force and there is an increase in the rate of rise and fall of force. These changes are thought to be triggered by the binding of catecholamine to the β-receptor, which in turn signals alterations in membranes and the contracto-regulatory protein complex by multiple, coordinated mechanisms involving Ca2+, cyclic nucleotides and protein phosphorylation1,2. This view is supported by results of in vitro studies with cardiac myofibrils3,4 and vesicles of sarcoplasmic reticulum (SR)5–7 showing that these organelles have sites of protein phosphorylation that may act as effectors of the adrenergic signal giving rise to the altered twitch dynamics. Phosphorylation of troponin I (TnI), a regulatory protein of cardiac myofibrils, results in a decreased steady-state affinity of troponin (TnC) for Ca2+, an increase in the off rate for Ca2+ exchange with TnC8 and a rightward shift of the relationship between free Ca2+ and myofibrillar force9 or ATPase3,4. Phosphorylation of phospholamban, a regulatory protein of cardiac SR, increases the velocity of Ca2+ transport by SR vesicles, the affinity of the transport protein for Ca2+ and the turnover of elementary steps of the ATPase reaction5–7,10,11. Taken together, these findings support the hypothesis that the inotropic response of the heart to catecholamine stimulation involves phosphorylation of TnI and phospholamban. Yet, although it is known that TnI is phosphorylated during adrenergic stimulation of beating heart12–14 there has been no clear evidence that phospholamban is phosphorylated at the same time. We now report that during the peak of the inotropic response of the rabbit heart to perfusion with isoproterenol, there is simultaneous phosphorylation of TnI and an 11,000-molecular weight (Mr) protein associated with SR, which is probably monomeric phospholamban.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsien, R. Adv. Cyclic Nucleotide Res. 8, 363–420 (1977).

    CAS  PubMed  Google Scholar 

  2. Katz, A. M. Adv. Cyclic Nucleotide Res. 11, 303–343 (1979).

    CAS  PubMed  Google Scholar 

  3. Holroyde, M. J., Howe, E. & Solaro, R. J. Biochim. biophys. Acta 586, 63–69 (1979).

    Article  CAS  Google Scholar 

  4. Ray, K. P. & England, P. J. FEBS Lett. 70, 11–16 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. LaRaia, P. J. & Morkin, E. Circulation Res. 35, 298–305 (1974).

    Article  CAS  Google Scholar 

  6. Tada, M., Kirchberger, M. A., Repke, D. I. & Katz, A. M. J. biol. Chem. 249, 6174–6180 (1974).

    CAS  PubMed  Google Scholar 

  7. Wray, H. L. & Gray, R. R. Biochim. biophys. Acta 461, 441–459 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Solaro, R. J., Robertson, S. P., Johnson, J. D., Holroyde, M. J. & Potter, J. D. Cold Spring Harb. Conf. Cell Proliferation: Protein Phosphorylation 8, 901–911 (1981).

  9. Mope, L., McClellan, G. B. & Winegrad, S. J. gen. Physiol. 75, 271–282 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Kranias, E. G., Mandel, F., Wang, T. & Schwartz, A. Biochemistry 19, 5434–5439 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Tada, M. et al. J. biol. Chem. 255, 1985–1992 (1980).

    CAS  PubMed  Google Scholar 

  12. England, P. J. Biochem. J. 160, 295–304 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Solaro, R. J., Moir, A. J. G. & Perry, S. V. Nature, 262, 615–617 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ezrailson, E. G., Potter, J. D., Michael, L. & Schwartz, A. J. mol. cell. Cardiol. 9, 693–698 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Moir, A. J. G., Solaro, R. J. & Perry, S. V. Biochem. J. 185, 505–513, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harigaya, S. & Schwartz, A. Circulation Res. 25, 781–794 (1968).

    Article  Google Scholar 

  17. Holroyde, M. J., Small, D. A. P., Howe, E. & Solaro, R. J. Biochim. biophys. Acta 587, 628–637 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Whitsett, J. A. & Wallick, E. T. Am. J. Physiol. 238, E38–E45 (1980).

    CAS  PubMed  Google Scholar 

  19. Van Alstyne, E. et al. Biochim. biophys. Acta 553, 388–395 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Kirchberger, M. A. & Tada, M. J. biol. Chem. 251, 725–729 (1976).

    CAS  PubMed  Google Scholar 

  21. LePeuch, C. J., Haiech, H. & Demaille, J. G. Biochemistry 18, 5150–5157 (1979).

    Article  CAS  Google Scholar 

  22. Lamers, J. M. J. & Stinis, J. T. Biochim. biophys. Acta 624, 443–459 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe, A. M., Lindemann, J. P., Jones, L. R., Besch, H. R. Jr., & Bailey, J. C. in Disturbances in Neurogenic Control of the Circulation (eds Abboud, F. M., Fozzard, H. A., Gilmore, J. P. & Reis, D. J.) 189–202 (American Physiological Society, New York, 1981).

    Google Scholar 

  24. LePeuch, C. J., Guilleux, J. C. & Demaille, J. G. FEBS Lett. 114, 165–168 (1980).

    Article  CAS  Google Scholar 

  25. High, C. W. & Stull, J. T. Am. J. Physiol. 239, H756–H764 (1980).

    CAS  PubMed  Google Scholar 

  26. Westwood, S. A. & Perry, S. V. Biochem. J. 197, 193–198 (1981).

    Article  Google Scholar 

  27. Kopp, J. S. & Bȧrȧny, M. J. biol. Chem. 254, 12007–12012 (1979).

    CAS  Google Scholar 

  28. Wilkinson, J. M. & Grand, R. J. A. Nature 271, 31–35 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kranias, E., Solaro, R. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 298, 182–184 (1982). https://doi.org/10.1038/298182a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298182a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing