Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-translational modification of tubulin dependent on organelle assembly

Abstract

Microtubules are involved in a wide variety of cellular functions1–3 and are major components of many subcellular structures (for example, the centriole, mitotic spindle, cytoskeleton and flagellar apparatus). The ability of microtubules to serve in such a diversity of functions may be accounted for, at least in part, by heterogeneity in the constituent types of α- and β-tubulin subunits4–10 in different microtubules. Higher eukaryotes generally possess several tubulin genes and this may account for part of the heterogeneity of tubulin subunits11–13. However, the unicellular eukaryote, Chlamydomonas reinhardii, has only two α- and two β- tubulin genes14–16, which suggests that some of the variation in tubulin subunits seen in this organism5,8 may arise as a result of post-translational modification. This notion is supported by the experiments of Lefebvre et al.8 who compared flagellar tubulins with those produced by in vitro translation of tubulin mRNAs. Here we show that a form of α-tubulin subunit apparently confined to the Chlamydomonas cell body is converted, post-translationally, into a flagellar form of α-tubulin and that this modification is dependent on flagellar assembly. We discuss possible mechanisms for these modifications and their implications for the generation of unique types of microtubules having specialized functions within the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirschner, M. W. Int. Rev. Cytol. 54, 1–71 (1978).

    Article  CAS  Google Scholar 

  2. Otto, A. M. Cell Biol. Int. Rep. 6, 1–18 (1982).

    Article  CAS  Google Scholar 

  3. Huang, B., Ramanis, Z. & Luck, D. J. L. Cell 28, 115–124 (1982).

    Article  CAS  Google Scholar 

  4. Bibring, T., Baxandall, J., Denslow, S. & Walker, B. J. Cell Biol. 69, 301–312 (1976).

    Article  CAS  Google Scholar 

  5. Piperno, G. & Luck, D. J. biol. Chem. 251, 2161–2167 (1967).

    Google Scholar 

  6. Stephens, R. E. Biochemistry 17, 2882–2891 (1978).

    Article  CAS  Google Scholar 

  7. Kemphues, K. J., Raff, R. A., Kaufman, T. C. & Raff, E. C. Proc. natn. Acad. Sci. U.S.A. 76, 3991–3995 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Lefebvre, P. A., Silflow, C. D., Wieben, E. D. & Rosenbaum, J. L. Cell 20, 469–477 (1980).

    Article  CAS  Google Scholar 

  9. George, H. J., Misra, L., Field, D. J. & Lee, J. C. Biochemistry 20, 2402–2409 (1981).

    Article  CAS  Google Scholar 

  10. Sheir-Neiss, G., Lai, M. H. & Morris, N. R. Cell 15, 639–647 (1978).

    Article  CAS  Google Scholar 

  11. Cleveland, D. W. et al. Cell 20, 95–105 (1980).

    Article  CAS  Google Scholar 

  12. Cowan, N. J., Wilde, C. D., Chow, L. T. & Wefald, F. C. Proc. natn. Acad. Sci. U.S.A. 78, 4877–4881 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Sanchez, F., Natzle, J. E., Cleveland, D. W., Kirshner, M. W. & McCarthy, B. J. Cell 22, 845–854 (1980).

    Article  CAS  Google Scholar 

  14. Minami, S. A., Collis, P. S., Young, E. E. & Weeks, D. P. Cell 24, 89–95 (1981).

    Article  CAS  Google Scholar 

  15. Brunke, K. J., Young, E. E., Buchbinder, B. U. & Weeks, D. P. Nucleic Acids Res. 10, 1295–1310 (1982).

    Article  CAS  Google Scholar 

  16. Silflow, C. D. & Rosenbaum, J. L. Cell 24, 81–88 (1981).

    Article  CAS  Google Scholar 

  17. Weeks, D. P., Collis, P. S. & Gealt, M. A. Nature 268, 667–668 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Weeks, D. P. & Collis, P. S. Cell 9, 15–27 (1976).

    Article  CAS  Google Scholar 

  19. Lefebvre, P. A., Nordstrom, S. A., Moulder, J. E. & Rosenbaum, J. L. J. Cell. Biol. 78, 8–27 (1978).

    Article  CAS  Google Scholar 

  20. Witman, G. B., Carlson, K., Berliner, J. & Rosenbaum, J. L. J. Cell Biol. 54, 507–539 (1972).

    Article  CAS  Google Scholar 

  21. Rosenbaum, J. L., Moulder, J. E. & Ringo, D. L. J. Cell Biol. 41, 600–619 (1969).

    Article  CAS  Google Scholar 

  22. Dentler, W. L. J. cell. Sci. 42, 207–220 (1980).

    CAS  PubMed  Google Scholar 

  23. Fulton, C. & Simpson, P. A. in Cell Motility (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 987–1005 (Cold Spring Harbor Laboratory, New York, 1976).

    Google Scholar 

  24. Oakley, B. R. & Morris, N. R. Cell 24, 837–845 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunke, K., Collis, P. & Weeks, D. Post-translational modification of tubulin dependent on organelle assembly. Nature 297, 516–518 (1982). https://doi.org/10.1038/297516a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297516a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing