Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diurnal variation of mesospheric ozone

Abstract

Photochemical models1–3 predict a considerable variation in ozone concentration between day and night in the mesosphere. To investigate this, four Petrel rockets were flown from South Uist (57°22′N, 7°22′W) on 2 October 1979. Ozone was measured by observing the atmospheric attenuation of a narrow band of UV radiation, using interference filters to define a bandwidth of 10 nm. The rockets were launched (1) at moon-set, 02.00h, (2) at sunrise, 06.00h, (3) at 09.30h and (4) at 15.30h; round 1 observing moonlight and the other three observing sunlight. The first two used the occultation technique4 and contained two photometers with wavebands centred around 265 and 290 nm (Fig. 1), giving ozone information from 48 to 95 km. For rounds 3 and 4 the Sun was at a zenith angle of 70°, and a single waveband centred around 265 nm gave a height range of 44 to 64 km. Full details of the experiment will be published elsewhere. The first three rounds were successful, but the fourth did not give good data because the rocket nosecone failed to clear the field of view. The results show significant diurnal variation above 54km, which exceeds a factor of 2 above 65 km and reaches a factor of 10 between night time and sunrise at 90 km.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, L. & Bowman, M. R. J. atmos. terr. Phys. 34, 1843–1858 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Shimazaki, T. & Laird, A. R. J. geophys. Res. 75, 3221–3235 (1970).

    Article  ADS  Google Scholar 

  3. Herman, J. R. J. geophys. Res. 84, 3701–3710 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Miller, D. E. & Ryder, P. Planet. Space Sci. 21, 963–970 (1973).

    Article  ADS  Google Scholar 

  5. Miller, D. E. Proc. R. Soc. A 301, 57–75 (1967).

    ADS  Google Scholar 

  6. Rodgers, C. D. Rev. Geophys. Space Phys. 14, 609–614 (1976).

    Article  ADS  Google Scholar 

  7. Broadfoot, A. L. Astrophys. J. 173, 681–689 (1972).

    Article  ADS  Google Scholar 

  8. Simon, P. C. COSPAR Technique Manual Ser. No. 7 (Institut d'Aeronomie Spatiale de Belgique, 1978).

    Google Scholar 

  9. Inn, E. C. Y. & Tanaka, Y. Advances in Chemistry No. 21, 263 (American Chemical Society, Washington DC, 1959).

    Google Scholar 

  10. Vigroux, E. Ann. Phys. Paris 8, 705–762 (1953).

    Google Scholar 

  11. Penndorf, R. J. opt. Soc. Am. 47, 1976–1820 (1957).

    Google Scholar 

  12. Moe, O. E. & Milone, E. E. Astrophys. J. 226, 301–314 (1978).

    Article  ADS  Google Scholar 

  13. COSPAR International Reference Atmosphere 1972, 216 (COSPAR, Akademie, Berlin, 1972).

  14. Krueger, A. J. & Minzner, R. A. J. geophys. Res. 81, 4477–4481 (1976).

    Article  ADS  Google Scholar 

  15. Llewellyn, E. J. & Witt, G. Planet. Space Sci. 25, 165–172 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Hays, P. B. & Roble, R. G. Planet. Space Sci. 21, 273–279 (1973).

    Article  ADS  Google Scholar 

  17. Krueger, A. J. et al. Phil. Trans. R. Soc. A296, 191–204 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Gille, J. C., Anderson, G. P. & Bailey, P. L. Geophys. Res. Lett. 7, 525–528 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Hilsenrath, E. J. atmos. Sci. 28, 295–297 (1971).

    Article  ADS  Google Scholar 

  20. Anderson, G. P. et al. in Proc. Quadrennial int. Ozone Symp. (ed. London, J.) 580–585 (International Ozone Commission (IAMAP), Boulder, 1981).

    Google Scholar 

  21. Penfield, H. et al. J. geophys. Res. 81, 6115–6120 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Wilson, W. J. & Schwartz, P. R. J. geophys. Res. 86, 7385–7388 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Hunt, B. G. J. atmos. terr. Phys. 35, 1755–1798 (1973).

    Article  ADS  Google Scholar 

  24. Fabian, P., Pyle, J. A. & Wells, R. J. J. geophys. Res. (in the press).

  25. Chemical Kinetic and Photochemical Data for Use in Stratospheric Modelling' Jet Propulsion Laboratory, Pasadena, 1981).

  26. Nicolet, M. & Peetermans, W. Planet. Space Sci. 28, 85–103 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Nicolet, M. Etudes des Reactions Chimiques de l'Ozone dans la Stratosphere 486–497 (Institut Royal Meteorologique de Belgique, Brussels, 1980); Planet. Space. Sci. 29, 951–974 (1981).

    Google Scholar 

  28. Frederick, J. E. & Hudson, R. D. J. atmos. Sci. 37, 1088–1098 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Rogers, J. W. et al. Geophys. Res. Lett. 4, 366–368 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Radford, H. E. et al. J. geophys. Res. 82, 472–478 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, G. Diurnal variation of mesospheric ozone. Nature 296, 133–135 (1982). https://doi.org/10.1038/296133a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296133a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing